def local_initialize_train(self): vertex_feature_dimension = self.entity_count if self.onehot_input else self.shape[ 0] type_matrix_shape = (self.relation_count, self.n_coefficients) vertex_matrix_shape = (vertex_feature_dimension, self.n_coefficients, self.shape[1]) self_matrix_shape = (vertex_feature_dimension, self.shape[1]) glorot_var_combined = glorot_variance( [vertex_matrix_shape[0], vertex_matrix_shape[2]]) self.W_forward = make_tf_variable(0, glorot_var_combined, vertex_matrix_shape) self.W_backward = make_tf_variable(0, glorot_var_combined, vertex_matrix_shape) self.W_self = make_tf_variable(0, glorot_var_combined, self_matrix_shape) type_init_var = 1 self.C_forward = make_tf_variable(0, type_init_var, type_matrix_shape) self.C_backward = make_tf_variable(0, type_init_var, type_matrix_shape) self.b = make_tf_bias(self.shape[1]) self.cached_vertex_embeddings = tf.Variable( np.zeros(self_matrix_shape, dtype=np.float32)) self.cached_messages_f = tf.Variable( np.zeros((self.edge_count, self.shape[1]), dtype=np.float32)) self.cached_messages_b = tf.Variable( np.zeros((self.edge_count, self.shape[1]), dtype=np.float32)) self.I = tf.placeholder(tf.int32, shape=[None], name="batch_indices")
def local_initialize_train(self): vertex_feature_dimension = self.entity_count if self.onehot_input else self.submatrix_d vertex_matrix_shape = (self.relation_count, self.n_coefficients, vertex_feature_dimension, self.submatrix_d) self_matrix_shape = self.shape glorot_var_combined = glorot_variance([vertex_matrix_shape[0], vertex_matrix_shape[2]]) self.W_forward = make_tf_variable(0, glorot_var_combined, vertex_matrix_shape) self.W_backward = make_tf_variable(0, glorot_var_combined, vertex_matrix_shape) self.W_self = make_tf_variable(0, glorot_var_combined, self_matrix_shape) self.b = make_tf_bias(self.shape[1])
def local_initialize_train(self): type_matrix_shape = (self.relation_count, self.shape[1]) vertex_matrix_shape = self.shape glorot_var_self = glorot_variance(vertex_matrix_shape) self.W_self = make_tf_variable(0, glorot_var_self, vertex_matrix_shape) type_init_var = 1 self.D_types_forward = make_tf_variable(0, type_init_var, type_matrix_shape) self.D_types_backward = make_tf_variable(0, type_init_var, type_matrix_shape) self.b = make_tf_bias(self.shape[1])
def local_initialize_train(self): variance = glorot_variance(self.shape) self.W = make_tf_variable(0, variance, self.shape) self.b = make_tf_bias(self.shape[1], init=1)
def local_initialize_train(self): relation_tensor_shape = (self.relation_count, self.relation_dim) relation_var = glorot_variance(relation_tensor_shape) self.G_sender = make_tf_variable(0, relation_var, relation_tensor_shape) self.G_receiver = make_tf_variable(0, relation_var, relation_tensor_shape)