示例#1
0
    def setup_attack(self, batch_inputs, batch_classes):
        """
        Setup attack.

        :param batch_inputs: input to attack
        :type batch_inputs: torch.autograd.Variable
        :param batch_classes: true classes
        :type batch_classes: torch.autograd.Variable
        :return: attack
        :rtype: attacks.UntargetedAttack
        """

        if self.args.no_label_leaking:
            attack = self.attack_class(self.model, batch_inputs, None,
                                       self.args.epsilon)
        else:
            attack = self.attack_class(self.model, batch_inputs, batch_classes,
                                       self.args.epsilon)

        if self.args.on_manifold:
            attack.set_bound(torch.from_numpy(self.min_bound),
                             torch.from_numpy(self.max_bound))
        else:
            attack.set_bound(None, None)

        if getattr(attack, 'set_c_0', None) is not None:
            attack.set_c_0(self.args.c_0)
        if getattr(attack, 'set_c_1', None) is not None:
            attack.set_c_1(self.args.c_1)
        if getattr(attack, 'set_c_2', None) is not None:
            attack.set_c_2(self.args.c_2)
        if getattr(attack, 'set_max_projections', None) is not None:
            attack.set_max_projections(self.args.max_projections)

        attack.set_max_iterations(self.args.max_iterations)
        attack.set_base_lr(self.args.base_lr)

        assert attack.training_mode is False

        if self.args.initialize_zero:
            attack.initialize_zero()
        else:
            attack.initialize_random()

        return attack
    def load_model(self):
        """
        Load model.
        """

        database = utils.read_hdf5(self.args.database_file).astype(numpy.float32)
        log('[Attack] read %sd' % self.args.database_file)

        self.N_font = database.shape[0]
        self.N_class = database.shape[1]
        resolution = database.shape[2]

        database = database.reshape((database.shape[0] * database.shape[1], database.shape[2], database.shape[3]))
        database = torch.from_numpy(database)
        if self.args.use_gpu:
            database = database.cuda()
        database = torch.autograd.Variable(database, False)

        N_theta = self.test_theta.shape[1]
        log('[Attack] using %d N_theta' % N_theta)
        decoder = models.AlternativeOneHotDecoder(database, self.N_font, self.N_class, N_theta)
        decoder.eval()

        image_channels = 1 if N_theta <= 7 else 3
        network_units = list(map(int, self.args.network_units.split(',')))
        log('[Attack] using %d input channels' % image_channels)
        classifier = models.Classifier(self.N_class, resolution=(image_channels, resolution, resolution),
                                       architecture=self.args.network_architecture,
                                       activation=self.args.network_activation,
                                       batch_normalization=not self.args.network_no_batch_normalization,
                                       start_channels=self.args.network_channels,
                                       dropout=self.args.network_dropout,
                                       units=network_units)

        assert os.path.exists(self.args.classifier_file), 'state file %s not found' % self.args.classifier_file
        state = State.load(self.args.classifier_file)
        log('[Attack] read %s' % self.args.classifier_file)

        classifier.load_state_dict(state.model)
        if self.args.use_gpu and not cuda.is_cuda(classifier):
            log('[Attack] classifier is not CUDA')
            classifier = classifier.cuda()
        log('[Attack] loaded classifier')

        # !
        classifier.eval()
        log('[Attack] set classifier to eval')

        self.model = models.DecoderClassifier(decoder, classifier)
示例#3
0
    def test(self):
        """
        Test the model.
        """

        self.model.eval()
        assert self.model.training is False
        log('[Training] %d set classifier to eval' % self.epoch)

        loss = error = 0
        num_batches = int(
            math.ceil(self.args.test_samples / self.args.batch_size))

        for b in range(num_batches):
            perm = numpy.take(range(self.args.test_samples),
                              range(b * self.args.batch_size,
                                    (b + 1) * self.args.batch_size),
                              mode='clip')
            batch_images = common.torch.as_variable(self.test_images[perm],
                                                    self.args.use_gpu)
            batch_classes = common.torch.as_variable(self.test_codes[perm],
                                                     self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            output_classes = self.model(batch_images)
            e = self.loss(batch_classes, output_classes)
            loss += e.item()
            a = self.error(batch_classes, output_classes)
            error += a.item()

        perturbation_loss = perturbation_error = success = iterations = norm = 0
        num_batches = int(
            math.ceil(self.args.attack_samples / self.args.batch_size))
        assert self.args.attack_samples > 0 and self.args.attack_samples <= self.test_images.shape[
            0]

        for b in range(num_batches):
            perm = numpy.take(range(self.args.attack_samples),
                              range(b * self.args.batch_size,
                                    (b + 1) * self.args.batch_size),
                              mode='clip')
            batch_images = common.torch.as_variable(self.test_images[perm],
                                                    self.args.use_gpu)
            batch_classes = common.torch.as_variable(self.test_codes[perm],
                                                     self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            objective = self.objective_class()
            attack = self.setup_attack(self.model, batch_images, batch_classes)
            s, p, _, _, _ = attack.run(objective, False)

            batch_images = batch_images + common.torch.as_variable(
                p.astype(numpy.float32), self.args.use_gpu)
            output_classes = self.model(batch_images)

            e = self.loss(batch_classes, output_classes)
            perturbation_loss += e.item()

            e = self.error(batch_classes, output_classes)
            perturbation_error += e.item()

            iterations += numpy.mean(
                s[s >= 0]) if numpy.sum(s >= 0) > 0 else -1
            norm += numpy.mean(
                numpy.linalg.norm(p.reshape(p.shape[0], -1),
                                  axis=1,
                                  ord=self.norm))
            success += numpy.sum(s >= 0) / self.args.batch_size

        decoder_perturbation_loss = decoder_perturbation_error = decoder_success = decoder_iterations = decoder_norm = 0
        num_batches = int(
            math.ceil(self.args.attack_samples / self.args.batch_size))
        assert self.args.attack_samples > 0 and self.args.attack_samples <= self.test_images.shape[
            0]

        for b in range(num_batches):
            perm = numpy.take(range(self.args.attack_samples),
                              range(b * self.args.batch_size,
                                    (b + 1) * self.args.batch_size),
                              mode='clip')
            batch_theta = common.torch.as_variable(self.test_theta[perm],
                                                   self.args.use_gpu)
            batch_classes = common.torch.as_variable(self.test_codes[perm],
                                                     self.args.use_gpu)

            objective = self.objective_class()
            if isinstance(self.decoder, models.SelectiveDecoder):
                self.decoder.set_code(batch_classes)
            attack = self.setup_decoder_attack(self.decoder_classifier,
                                               batch_theta, batch_classes)
            attack.set_bound(torch.from_numpy(self.min_bound),
                             torch.from_numpy(self.max_bound))
            s, p, _, _, _ = attack.run(objective, False)

            perturbations = common.torch.as_variable(p, self.args.use_gpu)
            batch_perturbed_theta = batch_theta + perturbations
            batch_perturbed_images = self.decoder(batch_perturbed_theta)

            output_classes = self.model(batch_perturbed_images)
            e = self.loss(batch_classes, output_classes)
            perturbation_loss += e.item()
            a = self.error(batch_classes, output_classes)
            perturbation_error += a.item()

            decoder_iterations += numpy.mean(
                s[s >= 0]) if numpy.sum(s >= 0) > 0 else -1
            decoder_norm += numpy.mean(
                numpy.linalg.norm(p.reshape(p.shape[0], -1),
                                  axis=1,
                                  ord=self.norm))
            decoder_success += numpy.sum(s >= 0) / self.args.batch_size

        loss /= num_batches
        error /= num_batches
        perturbation_loss /= num_batches
        perturbation_error /= num_batches
        success /= num_batches
        iterations /= num_batches
        norm /= num_batches
        decoder_perturbation_loss /= num_batches
        decoder_perturbation_error /= num_batches
        decoder_success /= num_batches
        decoder_iterations /= num_batches
        decoder_norm /= num_batches
        log('[Training] %d: test %g (%g) %g (%g) %g (%g)' %
            (self.epoch, loss, error, perturbation_loss, perturbation_error,
             decoder_perturbation_loss, decoder_perturbation_error))
        log('[Training] %d: test %g (%g, %g) %g (%g, %g)' %
            (self.epoch, success, iterations, norm, decoder_success,
             decoder_iterations, decoder_norm))

        num_batches = int(
            math.ceil(self.train_images.shape[0] / self.args.batch_size))
        iteration = self.epoch * num_batches
        self.test_statistics = numpy.vstack((
            self.test_statistics,
            numpy.array([[
                iteration,  # iterations
                iteration * (1 + self.args.max_iterations) *
                self.args.batch_size,  # samples seen
                min(num_batches, iteration) * self.args.batch_size +
                iteration * self.args.max_iterations *
                self.args.batch_size,  # unique samples seen
                loss,
                error,
                perturbation_loss,
                perturbation_error,
                decoder_perturbation_loss,
                decoder_perturbation_error,
                success,
                iterations,
                norm,
                decoder_success,
                decoder_iterations,
                decoder_norm,
            ]])))
示例#4
0
    def train(self):
        """
        Train adversarially.
        """

        num_batches = int(
            math.ceil(self.train_images.shape[0] / self.args.batch_size))
        permutation = numpy.random.permutation(self.train_images.shape[0])
        perturbation_permutation = numpy.random.permutation(
            self.train_images.shape[0])
        if self.args.safe:
            perturbation_permutation = perturbation_permutation[
                self.train_valid == 1]
        else:
            perturbation_permuation = permutation

        for b in range(num_batches):
            self.scheduler.update(self.epoch, float(b) / num_batches)

            self.model.eval()
            assert self.model.training is False
            objective = self.objective_class()
            split = self.args.batch_size // 2

            if self.args.full_variant:
                perm = numpy.concatenate(
                    (numpy.take(permutation,
                                range(b * self.args.batch_size,
                                      b * self.args.batch_size + split),
                                mode='wrap'),
                     numpy.take(perturbation_permutation,
                                range(b * self.args.batch_size + split,
                                      (b + 1) * self.args.batch_size),
                                mode='wrap')),
                    axis=0)
                batch_images = common.torch.as_variable(
                    self.train_images[perm], self.args.use_gpu)
                batch_classes = common.torch.as_variable(
                    self.train_codes[perm], self.args.use_gpu)
                batch_theta = common.torch.as_variable(self.train_theta[perm],
                                                       self.args.use_gpu)
                batch_images = batch_images.permute(0, 3, 1, 2)

                attack = self.setup_attack(self.model, batch_images[:split],
                                           batch_classes[:split])
                success, perturbations, _, _, _ = attack.run(
                    objective, self.args.verbose)
                batch_perturbations1 = common.torch.as_variable(
                    perturbations.astype(numpy.float32), self.args.use_gpu)
                batch_perturbed_images1 = batch_images[:split] + batch_perturbations1

                if isinstance(self.decoder, models.SelectiveDecoder):
                    self.decoder.set_code(batch_classes[split:])
                attack = self.setup_decoder_attack(self.decoder_classifier,
                                                   batch_theta[split:],
                                                   batch_classes[split:])
                attack.set_bound(torch.from_numpy(self.min_bound),
                                 torch.from_numpy(self.max_bound))
                decoder_success, decoder_perturbations, probabilities, norm, _ = attack.run(
                    objective, self.args.verbose)

                batch_perturbed_theta = batch_theta[
                    split:] + common.torch.as_variable(decoder_perturbations,
                                                       self.args.use_gpu)
                batch_perturbed_images2 = self.decoder(batch_perturbed_theta)
                batch_perturbations2 = batch_perturbed_images2 - batch_images[
                    split:]

                batch_input_images = torch.cat(
                    (batch_perturbed_images1, batch_perturbed_images2), dim=0)

                self.model.train()
                assert self.model.training is True

                output_classes = self.model(batch_input_images)

                self.scheduler.optimizer.zero_grad()
                perturbation_loss = self.loss(batch_classes[:split],
                                              output_classes[:split])
                decoder_perturbation_loss = self.loss(batch_classes[split:],
                                                      output_classes[split:])
                loss = (perturbation_loss + decoder_perturbation_loss) / 2
                loss.backward()
                self.scheduler.optimizer.step()
                loss = loss.item()
                perturbation_loss = perturbation_loss.item()
                decoder_perturbation_loss = decoder_perturbation_loss.item()

                gradient = torch.mean(
                    torch.abs(list(self.model.parameters())[0].grad))
                gradient = gradient.item()

                perturbation_error = self.error(batch_classes[:split],
                                                output_classes[:split])
                perturbation_error = perturbation_error.item()

                decoder_perturbation_error = self.error(
                    batch_classes[split:], output_classes[split:])
                decoder_perturbation_error = decoder_perturbation_error.item()

                error = (perturbation_error + decoder_perturbation_error) / 2
            else:
                perm = numpy.concatenate((
                    numpy.take(
                        perturbation_permutation,
                        range(b * self.args.batch_size + split + split // 2,
                              (b + 1) * self.args.batch_size),
                        mode='wrap'),
                    numpy.take(
                        permutation,
                        range(b * self.args.batch_size,
                              b * self.args.batch_size + split + split // 2),
                        mode='wrap'),
                ),
                                         axis=0)
                batch_images = common.torch.as_variable(
                    self.train_images[perm], self.args.use_gpu)
                batch_classes = common.torch.as_variable(
                    self.train_codes[perm], self.args.use_gpu)
                batch_theta = common.torch.as_variable(self.train_theta[perm],
                                                       self.args.use_gpu)
                batch_images = batch_images.permute(0, 3, 1, 2)

                attack = self.setup_attack(self.model,
                                           batch_images[split // 2:split],
                                           batch_classes[split // 2:split])
                success, perturbations, _, _, _ = attack.run(
                    objective, self.args.verbose)
                batch_perturbations1 = common.torch.as_variable(
                    perturbations.astype(numpy.float32), self.args.use_gpu)
                batch_perturbed_images1 = batch_images[
                    split // 2:split] + batch_perturbations1

                if isinstance(self.decoder, models.SelectiveDecoder):
                    self.decoder.set_code(batch_classes[:split // 2])
                attack = self.setup_decoder_attack(self.decoder_classifier,
                                                   batch_theta[:split // 2],
                                                   batch_classes[:split // 2])
                attack.set_bound(torch.from_numpy(self.min_bound),
                                 torch.from_numpy(self.max_bound))
                decoder_success, decoder_perturbations, probabilities, norm, _ = attack.run(
                    objective, self.args.verbose)

                batch_perturbed_theta = batch_theta[:split //
                                                    2] + common.torch.as_variable(
                                                        decoder_perturbations,
                                                        self.args.use_gpu)
                batch_perturbed_images2 = self.decoder(batch_perturbed_theta)
                batch_perturbations2 = batch_perturbed_images2 - batch_images[:split
                                                                              //
                                                                              2]

                batch_input_images = torch.cat(
                    (batch_perturbed_images2, batch_perturbed_images1,
                     batch_images[split:]),
                    dim=0)

                self.model.train()
                assert self.model.training is True

                output_classes = self.model(batch_input_images)

                self.scheduler.optimizer.zero_grad()
                loss = self.loss(batch_classes[split:], output_classes[split:])
                perturbation_loss = self.loss(batch_classes[split // 2:split],
                                              output_classes[split // 2:split])
                decoder_perturbation_loss = self.loss(
                    batch_classes[:split // 2], output_classes[:split // 2])
                l = (loss + perturbation_loss + decoder_perturbation_loss) / 3
                l.backward()
                self.scheduler.optimizer.step()
                loss = loss.item()
                perturbation_loss = perturbation_loss.item()
                decoder_perturbation_loss = decoder_perturbation_loss.item()

                gradient = torch.mean(
                    torch.abs(list(self.model.parameters())[0].grad))
                gradient = gradient.item()

                error = self.error(batch_classes[split:],
                                   output_classes[split:])
                error = error.item()

                perturbation_error = self.error(
                    batch_classes[split // 2:split],
                    output_classes[split // 2:split])
                perturbation_error = perturbation_error.item()

                decoder_perturbation_error = self.error(
                    batch_classes[:split // 2], output_classes[:split // 2])
                decoder_perturbation_error = decoder_perturbation_error.item()

            iterations = numpy.mean(
                success[success >= 0]) if numpy.sum(success >= 0) > 0 else -1
            norm = numpy.mean(
                numpy.linalg.norm(perturbations.reshape(
                    perturbations.shape[0], -1),
                                  axis=1,
                                  ord=self.norm))
            success = numpy.sum(success >= 0) / self.args.batch_size

            decoder_iterations = numpy.mean(
                decoder_success[decoder_success >= 0]) if numpy.sum(
                    decoder_success >= 0) > 0 else -1
            decoder_norm = numpy.mean(
                numpy.linalg.norm(decoder_perturbations, axis=1,
                                  ord=self.norm))
            decoder_success = numpy.sum(
                decoder_success >= 0) / self.args.batch_size

            iteration = self.epoch * num_batches + b + 1
            self.train_statistics = numpy.vstack((
                self.train_statistics,
                numpy.array([[
                    iteration,  # iterations
                    iteration * (1 + self.args.max_iterations) *
                    self.args.batch_size,  # samples seen
                    min(num_batches, iteration) * self.args.batch_size +
                    iteration * self.args.max_iterations *
                    self.args.batch_size,  # unique samples seen
                    loss,
                    error,
                    perturbation_loss,
                    perturbation_error,
                    decoder_perturbation_loss,
                    decoder_perturbation_error,
                    success,
                    iterations,
                    norm,
                    decoder_success,
                    decoder_iterations,
                    decoder_norm,
                    gradient
                ]])))

            if b % self.args.skip == self.args.skip // 2:
                log('[Training] %d | %d: %g (%g) %g (%g) %g (%g) [%g]' % (
                    self.epoch,
                    b,
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 3]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 4]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 5]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 6]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 7]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 8]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, -1]),
                ))
                log('[Training] %d | %d: %g (%g, %g) %g (%g, %g)' % (
                    self.epoch,
                    b,
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 9]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 10]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 11]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 12]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 13]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 14]),
                ))

        self.debug('clean.%d.png' % self.epoch,
                   batch_images.permute(0, 2, 3, 1))
        self.debug('perturbed.%d.png' % self.epoch,
                   batch_perturbed_images1.permute(0, 2, 3, 1))
        self.debug('perturbed2.%d.png' % self.epoch,
                   batch_perturbed_images2.permute(0, 2, 3, 1))
        self.debug('perturbation.%d.png' % self.epoch,
                   batch_perturbations1.permute(0, 2, 3, 1),
                   cmap='seismic')
        self.debug('perturbation2.%d.png' % self.epoch,
                   batch_perturbations2.permute(0, 2, 3, 1),
                   cmap='seismic')
    def load_data(self):
        """
        Load data and model.
        """

        with logw('[Detection] read %s' % self.args.train_images_file):
            self.nearest_neighbor_images = utils.read_hdf5(
                self.args.train_images_file)
            assert len(self.nearest_neighbor_images.shape) == 3

        with logw('[Detection] read %s' % self.args.test_images_file):
            self.test_images = utils.read_hdf5(self.args.test_images_file)
            if len(self.test_images.shape) < 4:
                self.test_images = numpy.expand_dims(self.test_images, axis=3)

        with logw('[Detection] read %s' % self.args.train_codes_file):
            self.train_codes = utils.read_hdf5(self.args.train_codes_file)

        with logw('[Detection] read %s' % self.args.test_codes_file):
            self.test_codes = utils.read_hdf5(self.args.test_codes_file)

        with logw('[Detection] read %s' % self.args.test_theta_file):
            self.test_theta = utils.read_hdf5(self.args.test_theta_file)

        with logw('[Detection] read %s' % self.args.perturbations_file):
            self.perturbations = utils.read_hdf5(self.args.perturbations_file)
            assert len(self.perturbations.shape) == 3

        with logw('[Detection] read %s' % self.args.success_file):
            self.success = utils.read_hdf5(self.args.success_file)

        with logw('[Detection] read %s' % self.args.accuracy_file):
            self.accuracy = utils.read_hdf5(self.args.accuracy_file)

        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        num_attempts = self.perturbations.shape[1]
        self.test_images = self.test_images[:self.perturbations.shape[0]]
        self.train_images = self.nearest_neighbor_images[:self.perturbations.
                                                         shape[0]]
        self.test_codes = self.test_codes[:self.perturbations.shape[0]]
        self.accuracy = self.accuracy[:self.perturbations.shape[0]]
        self.test_theta = self.test_theta[:self.perturbations.shape[0]]

        self.perturbations = self.perturbations.reshape(
            (self.perturbations.shape[0] * self.perturbations.shape[1],
             self.perturbations.shape[2]))
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success.reshape(
            (self.success.shape[0] * self.success.shape[1]))

        self.accuracy = numpy.repeat(self.accuracy, num_attempts, axis=0)
        self.test_images = numpy.repeat(self.test_images, num_attempts, axis=0)
        self.train_images = numpy.repeat(self.train_images,
                                         num_attempts,
                                         axis=0)
        self.test_codes = numpy.repeat(self.test_codes, num_attempts, axis=0)
        self.test_theta = numpy.repeat(self.test_theta, num_attempts, axis=0)

        max_samples = self.args.max_samples
        self.success = self.success[:max_samples]
        self.accuracy = self.accuracy[:max_samples]
        self.perturbations = self.perturbations[:max_samples]
        self.test_images = self.test_images[:max_samples]
        self.train_images = self.train_images[:max_samples]
        self.test_codes = self.test_codes[:max_samples]
        self.test_theta = self.test_theta[:max_samples]

        with logw('[Testing] read %s' % self.args.database_file):
            database = utils.read_hdf5(self.args.database_file)

            self.N_font = database.shape[0]
            self.N_class = database.shape[1]
            self.N_theta = self.test_theta.shape[1]

            database = database.reshape((database.shape[0] * database.shape[1],
                                         database.shape[2], database.shape[3]))
            database = torch.from_numpy(database)
            if self.args.use_gpu:
                database = database.cuda()
            database = torch.autograd.Variable(database, False)

            self.model = models.AlternativeOneHotDecoder(
                database, self.N_font, self.N_class, self.N_theta)
            self.model.eval()

        self.compute_images()
    def load_data_and_model(self):
        """
        Load data and model.
        """

        database = utils.read_hdf5(self.args.database_file).astype(
            numpy.float32)
        log('[Visualization] read %s' % self.args.database_file)

        N_font = database.shape[0]
        N_class = database.shape[1]
        resolution = database.shape[2]

        database = database.reshape((database.shape[0] * database.shape[1],
                                     database.shape[2], database.shape[3]))
        database = torch.from_numpy(database)
        if self.args.use_gpu:
            database = database.cuda()
        database = torch.autograd.Variable(database, False)

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(
            numpy.float32)
        if len(self.test_images.shape) < 4:
            self.test_images = numpy.expand_dims(self.test_images, axis=3)

        self.perturbations = utils.read_hdf5(
            self.args.perturbations_file).astype(numpy.float32)
        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        log('[Visualization] read %s' % self.args.perturbations_file)

        self.success = utils.read_hdf5(self.args.success_file)
        self.success = numpy.swapaxes(self.success, 0, 1)
        log('[Visualization] read %s' % self.args.success_file)

        self.accuracy = utils.read_hdf5(self.args.accuracy_file)
        log('[Visualization] read %s' % self.args.success_file)

        self.test_theta = utils.read_hdf5(self.args.test_theta_file).astype(
            numpy.float32)
        self.test_theta = self.test_theta[:self.perturbations.shape[0]]
        N_theta = self.test_theta.shape[1]
        log('[Visualization] using %d N_theta' % N_theta)
        log('[Visualization] read %s' % self.args.test_theta_file)

        self.test_codes = utils.read_hdf5(self.args.test_codes_file).astype(
            numpy.int)
        self.test_codes = self.test_codes[:self.perturbations.shape[0]]
        self.test_codes = self.test_codes[:, 1:3]
        self.test_codes = numpy.concatenate(
            (common.numpy.one_hot(self.test_codes[:, 0], N_font),
             common.numpy.one_hot(self.test_codes[:, 1], N_class)),
            axis=1).astype(numpy.float32)
        log('[Attack] read %s' % self.args.test_codes_file)

        image_channels = 1 if N_theta <= 7 else 3
        network_units = list(map(int, self.args.network_units.split(',')))
        log('[Visualization] using %d input channels' % image_channels)
        self.classifier = models.Classifier(
            N_class,
            resolution=(image_channels, resolution, resolution),
            architecture=self.args.network_architecture,
            activation=self.args.network_activation,
            batch_normalization=not self.args.network_no_batch_normalization,
            start_channels=self.args.network_channels,
            dropout=self.args.network_dropout,
            units=network_units)
        self.decoder = models.AlternativeOneHotDecoder(database, N_font,
                                                       N_class, N_theta)
        self.decoder.eval()

        assert os.path.exists(
            self.args.classifier_file
        ), 'state file %s not found' % self.args.classifier_file
        state = State.load(self.args.classifier_file)
        log('[Visualization] read %s' % self.args.classifier_file)

        self.classifier.load_state_dict(state.model)
        if self.args.use_gpu and not cuda.is_cuda(self.classifier):
            log('[Visualization] classifier is not CUDA')
            self.classifier = self.classifier.cuda()
        log('[Visualization] loaded classifier')

        self.classifier.eval()
        log('[Visualization] set classifier to eval')
示例#7
0
    def load_data(self):
        """
        Load data and model.
        """

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(
            numpy.float32)
        log('[Testing] read %s' % self.args.test_images_file)

        if len(self.test_images.shape) <= 3:
            self.test_images = numpy.expand_dims(self.test_images, axis=3)
            log('[Testing] no color images, adjusted size')

        self.train_images = utils.read_hdf5(
            self.args.train_images_file).astype(numpy.float32)
        # !
        self.train_images = self.train_images.reshape(
            (self.train_images.shape[0], -1))
        log('[Testing] read %s' % self.args.train_images_file)

        self.test_theta = utils.read_hdf5(self.args.test_theta_file).astype(
            numpy.float32)
        log('[Testing] read %s' % self.args.test_theta_file)

        self.train_theta = utils.read_hdf5(self.args.train_theta_file).astype(
            numpy.float32)
        log('[Testing] read %s' % self.args.train_theta_file)

        self.test_codes = utils.read_hdf5(
            self.args.test_codes_file).astype(int)
        log('[Testing] read %s' % self.args.test_codes_file)

        self.accuracy = utils.read_hdf5(self.args.accuracy_file)
        log('[Testing] read %s' % self.args.accuracy_file)

        self.perturbations = utils.read_hdf5(
            self.args.perturbations_file).astype(numpy.float32)
        self.N_attempts = self.perturbations.shape[0]

        # First, repeat relevant data.
        self.perturbation_theta = numpy.repeat(
            self.test_theta[:self.perturbations.shape[1]],
            self.N_attempts,
            axis=0)
        self.perturbation_codes = numpy.repeat(
            self.test_codes[:self.perturbations.shape[1]],
            self.N_attempts,
            axis=0)
        self.accuracy = numpy.repeat(
            self.accuracy[:self.perturbations.shape[1]],
            self.N_attempts,
            axis=0)

        # Then, reshape the perturbations!
        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        self.perturbations = self.perturbations.reshape(
            (self.perturbations.shape[0] * self.perturbations.shape[1], -1))
        log('[Testing] read %s' % self.args.perturbations_file)

        self.success = utils.read_hdf5(self.args.success_file)
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success.reshape(
            (self.success.shape[0] * self.success.shape[1]))
        log('[Testing] read %s' % self.args.success_file)

        database = utils.read_hdf5(self.args.database_file)
        log('[Testing] read %s' % self.args.database_file)

        self.N_font = database.shape[0]
        self.N_class = database.shape[1]
        N_theta = self.test_theta.shape[1]
        log('[Testing] using %d N_theta' % N_theta)

        database = database.reshape((database.shape[0] * database.shape[1],
                                     database.shape[2], database.shape[3]))
        database = torch.from_numpy(database)
        if self.args.use_gpu:
            database = database.cuda()
        database = torch.autograd.Variable(database, False)

        self.model = models.AlternativeOneHotDecoder(database, self.N_font,
                                                     self.N_class, N_theta)
        self.model.eval()
    def load_data(self):
        """
        Load data.
        """

        assert self.args.batch_size % 4 == 0

        self.database = utils.read_hdf5(self.args.database_file).astype(
            numpy.float32)
        log('[Training] read %s' % self.args.database_file)

        self.N_font = self.database.shape[0]
        self.N_class = self.database.shape[1]

        self.database = self.database.reshape(
            (self.database.shape[0] * self.database.shape[1],
             self.database.shape[2], self.database.shape[3]))
        self.database = torch.from_numpy(self.database)
        if self.args.use_gpu:
            self.database = self.database.cuda()
            self.database = torch.autograd.Variable(self.database, False)

        self.train_images = utils.read_hdf5(
            self.args.train_images_file).astype(numpy.float32)
        log('[Training] read %s' % self.args.train_images_file)

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(
            numpy.float32)
        log('[Training] read %s' % self.args.test_images_file)

        # For handling both color and gray images.
        if len(self.train_images.shape) < 4:
            self.train_images = numpy.expand_dims(self.train_images, axis=3)
            self.test_images = numpy.expand_dims(self.test_images, axis=3)
            log('[Training] no color images, adjusted size')
        self.resolution = self.train_images.shape[2]
        log('[Training] resolution %d' % self.resolution)

        self.train_codes = utils.read_hdf5(self.args.train_codes_file).astype(
            numpy.int)
        assert self.train_codes.shape[1] == 3
        log('[Training] read %s' % self.args.train_codes_file)

        self.test_codes = utils.read_hdf5(self.args.test_codes_file).astype(
            numpy.int)
        assert self.test_codes.shape[1] == 3
        log('[Training] read %s' % self.args.test_codes_file)

        self.train_theta = utils.read_hdf5(self.args.train_theta_file).astype(
            numpy.float32)
        log('[Training] read %s' % self.args.train_theta_file)

        self.min_bound = numpy.min(self.train_theta, axis=0)
        self.max_bound = numpy.max(self.train_theta, axis=0)

        self.test_theta = utils.read_hdf5(self.args.test_theta_file).astype(
            numpy.float32)
        log('[Training] read %s' % self.args.test_theta_file)

        assert self.train_codes.shape[0] == self.train_images.shape[0]
        assert self.test_codes.shape[0] == self.test_images.shape[0]
        assert self.train_theta.shape[0] == self.train_images.shape[0]
        assert self.test_theta.shape[0] == self.test_images.shape[0]

        # Select subset of samples
        if self.args.training_samples < 0:
            self.args.training_samples = self.train_images.shape[0]
        else:
            self.args.training_samples = min(self.args.training_samples,
                                             self.train_images.shape[0])
        log('[Training] found %d classes' % self.N_class)
        log('[Training] using %d training samples' %
            self.args.training_samples)

        if self.args.test_samples < 0:
            self.args.test_samples = self.test_images.shape[0]
        else:
            self.args.test_samples = min(self.args.test_samples,
                                         self.test_images.shape[0])

        if self.args.early_stopping:
            assert self.args.validation_samples > 0
            assert self.args.training_samples + self.args.validation_samples <= self.train_images.shape[
                0]
            self.val_images = self.train_images[self.train_images.shape[0] -
                                                self.args.validation_samples:]
            self.val_codes = self.train_codes[self.train_codes.shape[0] -
                                              self.args.validation_samples:,
                                              self.args.label_index]
            self.train_images = self.train_images[:self.train_images.shape[0] -
                                                  self.args.validation_samples]
            self.train_codes = self.train_codes[:self.train_codes.shape[0] -
                                                self.args.validation_samples]
            assert self.val_images.shape[
                0] == self.args.validation_samples and self.val_codes.shape[
                    0] == self.args.validation_samples

        if self.args.random_samples:
            perm = numpy.random.permutation(self.train_images.shape[0] // 10)
            perm = perm[:self.args.training_samples // 10]
            perm = numpy.repeat(perm, self.N_class, axis=0) * 10 + numpy.tile(
                numpy.array(range(self.N_class)), (perm.shape[0]))
            self.train_images = self.train_images[perm]
            self.train_codes = self.train_codes[perm]
            self.train_theta = self.train_theta[perm]
        else:
            self.train_images = self.train_images[:self.args.training_samples]
            self.train_codes = self.train_codes[:self.args.training_samples]
            self.train_theta = self.train_theta[:self.args.training_samples]

        # Check that the dataset is balanced.
        number_samples = self.train_codes.shape[0] // self.N_class
        for c in range(self.N_class):
            number_samples_ = numpy.sum(
                self.train_codes[:, self.args.label_index] == c)
            if number_samples_ != number_samples:
                log(
                    '[Training] dataset not balanced, class %d should have %d samples but has %d'
                    % (c, number_samples, number_samples_), LogLevel.WARNING)
    def train(self):
        """
        Train adversarially.
        """

        split = self.args.batch_size // 2
        num_batches = int(
            math.ceil(self.train_images.shape[0] / self.args.batch_size))
        permutation = numpy.random.permutation(self.train_images.shape[0])

        for b in range(num_batches):
            self.scheduler.update(self.epoch, float(b) / num_batches)

            perm = numpy.take(permutation,
                              range(b * self.args.batch_size,
                                    (b + 1) * self.args.batch_size),
                              mode='wrap')
            batch_images = common.torch.as_variable(self.train_images[perm],
                                                    self.args.use_gpu)
            batch_theta = common.torch.as_variable(self.train_theta[perm],
                                                   self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            batch_fonts = self.train_codes[perm, 1]
            batch_classes = self.train_codes[perm, self.args.label_index]
            batch_code = numpy.concatenate(
                (common.numpy.one_hot(batch_fonts, self.N_font),
                 common.numpy.one_hot(batch_classes, self.N_class)),
                axis=1).astype(numpy.float32)
            batch_code = common.torch.as_variable(batch_code,
                                                  self.args.use_gpu)
            batch_classes = common.torch.as_variable(batch_classes,
                                                     self.args.use_gpu)

            self.model.eval()
            assert self.model.training is False

            if self.args.full_variant:
                objective = self.objective_class()
                self.decoder.set_code(batch_code)
                attack = self.setup_attack(self.decoder_classifier,
                                           batch_theta, batch_classes)
                attack.set_bound(torch.from_numpy(self.min_bound),
                                 torch.from_numpy(self.max_bound))
                success, perturbations, probabilities, norm, _ = attack.run(
                    objective, self.args.verbose)

                batch_perturbed_theta = batch_theta + common.torch.as_variable(
                    perturbations, self.args.use_gpu)
                batch_perturbed_images = self.decoder(batch_perturbed_theta)
                batch_perturbations = batch_perturbed_images - batch_images

                self.model.train()
                assert self.model.training is True

                output_classes = self.model(batch_perturbed_images)

                self.scheduler.optimizer.zero_grad()
                loss = self.loss(batch_classes, output_classes)
                loss.backward()
                self.scheduler.optimizer.step()
                loss = perturbation_loss = loss.item()

                gradient = torch.mean(
                    torch.abs(list(self.model.parameters())[0].grad))
                gradient = gradient.item()

                error = self.error(batch_classes, output_classes)
                error = perturbation_error = error.item()
            else:
                objective = self.objective_class()
                self.decoder.set_code(batch_code[split:])
                attack = self.setup_attack(self.decoder_classifier,
                                           batch_theta[split:],
                                           batch_classes[split:])
                attack.set_bound(torch.from_numpy(self.min_bound),
                                 torch.from_numpy(self.max_bound))
                success, perturbations, probabilities, norm, _ = attack.run(
                    objective, self.args.verbose)

                batch_perturbed_theta = batch_theta[
                    split:] + common.torch.as_variable(perturbations,
                                                       self.args.use_gpu)
                batch_perturbed_images = self.decoder(batch_perturbed_theta)
                batch_perturbations = batch_perturbed_images - batch_images[
                    split:]

                self.model.train()
                assert self.model.training is True

                batch_input_images = torch.cat(
                    (batch_images[:split], batch_perturbed_images), dim=0)
                output_classes = self.model(batch_input_images)

                self.scheduler.optimizer.zero_grad()
                loss = self.loss(batch_classes[:split], output_classes[:split])
                perturbation_loss = self.loss(batch_classes[split:],
                                              output_classes[split:])
                l = (loss + perturbation_loss) / 2
                l.backward()
                self.scheduler.optimizer.step()
                loss = loss.item()
                perturbation_loss = perturbation_loss.item()

                gradient = torch.mean(
                    torch.abs(list(self.model.parameters())[0].grad))
                gradient = gradient.item()

                error = self.error(batch_classes[:split],
                                   output_classes[:split])
                error = error.item()

                perturbation_error = self.error(batch_classes[split:],
                                                output_classes[split:])
                perturbation_error = perturbation_error.item()

            iterations = numpy.mean(
                success[success >= 0]) if numpy.sum(success >= 0) > 0 else -1
            norm = numpy.mean(
                numpy.linalg.norm(perturbations.reshape(
                    perturbations.shape[0], -1),
                                  axis=1,
                                  ord=self.norm))
            success = numpy.sum(success >= 0) / (self.args.batch_size // 2)

            iteration = self.epoch * num_batches + b + 1
            self.train_statistics = numpy.vstack((
                self.train_statistics,
                numpy.array([[
                    iteration,  # iterations
                    iteration * (1 + self.args.max_iterations) *
                    self.args.batch_size,  # samples seen
                    min(num_batches, iteration) * self.args.batch_size +
                    iteration * self.args.max_iterations *
                    self.args.batch_size,  # unique samples seen
                    loss,
                    error,
                    perturbation_loss,
                    perturbation_error,
                    success,
                    iterations,
                    norm,
                    gradient
                ]])))

            if b % self.args.skip == self.args.skip // 2:
                log('[Training] %d | %d: %g (%g) %g (%g) [%g]' % (
                    self.epoch,
                    b,
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 3]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 4]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 5]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 6]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, -1]),
                ))
                log('[Training] %d | %d: %g (%g, %g)' % (
                    self.epoch,
                    b,
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 7]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 8]),
                    numpy.mean(self.train_statistics[
                        max(0, iteration - self.args.skip):iteration, 9]),
                ))

        self.debug('clean.%d.png' % self.epoch,
                   batch_images.permute(0, 2, 3, 1))
        self.debug('perturbed.%d.png' % self.epoch,
                   batch_perturbed_images.permute(0, 2, 3, 1))
        self.debug('perturbation.%d.png' % self.epoch,
                   batch_perturbations.permute(0, 2, 3, 1),
                   cmap='seismic')
    def load_data(self):
        """
        Load data and model.
        """

        with logw('[Detection] read %s' % self.args.train_images_file):
            self.nearest_neighbor_images = utils.read_hdf5(self.args.train_images_file)
            assert len(self.nearest_neighbor_images.shape) == 3

        with logw('[Detection] read %s' % self.args.test_images_file):
            self.test_images = utils.read_hdf5(self.args.test_images_file)
            if len(self.test_images.shape) < 4:
                self.test_images = numpy.expand_dims(self.test_images, axis=3)

        with logw('[Detection] read %s' % self.args.perturbations_file):
            self.perturbations = utils.read_hdf5(self.args.perturbations_file)
            assert len(self.perturbations.shape) == 4

        with logw('[Detection] read %s' % self.args.success_file):
            self.success = utils.read_hdf5(self.args.success_file)

        with logw('[Detection] read %s' % self.args.accuracy_file):
            self.accuracy = utils.read_hdf5(self.args.accuracy_file)

        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        num_attempts = self.perturbations.shape[1]
        self.test_images = self.test_images[:self.perturbations.shape[0]]
        self.train_images = self.nearest_neighbor_images[:self.perturbations.shape[0]]
        self.accuracy = self.accuracy[:self.perturbations.shape[0]]

        self.perturbations = self.perturbations.reshape((self.perturbations.shape[0]*self.perturbations.shape[1], self.perturbations.shape[2], self.perturbations.shape[3]))
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success.reshape((self.success.shape[0]*self.success.shape[1]))

        self.accuracy = numpy.repeat(self.accuracy, num_attempts, axis=0)
        self.test_images = numpy.repeat(self.test_images, num_attempts, axis=0)
        self.train_images = numpy.repeat(self.train_images, num_attempts, axis=0)

        max_samples = self.args.max_samples
        self.success = self.success[:max_samples]
        self.accuracy = self.accuracy[:max_samples]
        self.perturbations = self.perturbations[:max_samples]
        self.test_images = self.test_images[:max_samples]
        self.train_images = self.train_images[:max_samples]

        if self.args.mode == 'true':
            assert self.args.database_file
            assert self.args.test_codes_file
            assert self.args.test_theta_file

            self.test_codes = utils.read_hdf5(self.args.test_codes_file)
            log('[Detection] read %s' % self.args.test_codes_file)

            self.test_theta = utils.read_hdf5(self.args.test_theta_file)
            log('[Detection] read %s' % self.args.test_theta_file)

            self.test_codes = self.test_codes[:self.perturbations.shape[0]]
            self.test_theta = self.test_theta[:self.perturbations.shape[0]]

            self.test_codes = numpy.repeat(self.test_codes, num_attempts, axis=0)
            self.test_theta = numpy.repeat(self.test_theta, num_attempts, axis=0)

            self.test_codes = self.test_codes[:max_samples]
            self.test_theta = self.test_theta[:max_samples]

            database = utils.read_hdf5(self.args.database_file)
            log('[Detection] read %s' % self.args.database_file)

            self.N_font = database.shape[0]
            self.N_class = database.shape[1]
            self.N_theta = self.test_theta.shape[1]

            database = database.reshape((database.shape[0]*database.shape[1], database.shape[2], database.shape[3]))
            database = torch.from_numpy(database)
            if self.args.use_gpu:
                database = database.cuda()
            database = torch.autograd.Variable(database, False)

            self.model = models.AlternativeOneHotDecoder(database, self.N_font, self.N_class, self.N_theta)
            self.model.eval()
            log('[Detection] initialized decoder')
        elif self.args.mode == 'appr':
            assert self.args.decoder_files
            assert self.args.test_codes_file
            assert self.args.test_theta_file

            self.test_codes = utils.read_hdf5(self.args.test_codes_file)
            log('[Detection] read %s' % self.args.test_codes_file)

            self.test_theta = utils.read_hdf5(self.args.test_theta_file)
            log('[Detection] read %s' % self.args.test_theta_file)

            self.test_codes = self.test_codes[:self.perturbations.shape[0]]
            self.test_theta = self.test_theta[:self.perturbations.shape[0]]

            self.test_codes = numpy.repeat(self.test_codes, num_attempts, axis=0)
            self.test_theta = numpy.repeat(self.test_theta, num_attempts, axis=0)

            self.test_codes = self.test_codes[:max_samples]
            self.test_theta = self.test_theta[:max_samples]

            assert self.args.decoder_files
            decoder_files = self.args.decoder_files.split(',')
            for decoder_file in decoder_files:
                assert os.path.exists(decoder_file), 'could not find %s' % decoder_file

            resolution = [1 if len(self.test_images.shape) <= 3 else self.test_images.shape[3], self.test_images.shape[1], self.test_images.shape[2]]
            decoder_units = list(map(int, self.args.decoder_units.split(',')))

            if len(decoder_files) > 1:
                log('[Detection] loading multiple decoders')
                decoders = []
                for i in range(len(decoder_files)):
                    decoder = models.LearnedDecoder(self.args.latent_space_size,
                                                    resolution=resolution,
                                                    architecture=self.args.decoder_architecture,
                                                    start_channels=self.args.decoder_channels,
                                                    activation=self.args.decoder_activation,
                                                    batch_normalization=not self.args.decoder_no_batch_normalization,
                                                    units=decoder_units)

                    state = State.load(decoder_files[i])
                    decoder.load_state_dict(state.model)
                    if self.args.use_gpu and not cuda.is_cuda(decoder):
                        decoder = decoder.cuda()
                    decoders.append(decoder)

                    decoder.eval()
                    log('[Detection] loaded %s' % decoder_files[i])
                self.model = models.SelectiveDecoder(decoders, resolution=resolution)
            else:
                log('[Detection] loading one decoder')
                decoder = models.LearnedDecoder(self.args.latent_space_size,
                                                resolution=resolution,
                                                architecture=self.args.decoder_architecture,
                                                start_channels=self.args.decoder_channels,
                                                activation=self.args.decoder_activation,
                                                batch_normalization=not self.args.decoder_no_batch_normalization,
                                                units=decoder_units)

                state = State.load(decoder_files[0])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoder.eval()
                log('[Detection] read decoder')

                self.model = decoder