def purge_previous_im(self, tar_name): if self.save_as_tar: if os.path.isfile(tar_name): os.remove(tar_name) else: filter = ['*.bmp', '*.png', '*.tif'] filelist = utils.listFiles(self._saveDir, filter) for fileinfo in filelist: im_path = fileinfo.absoluteFilePath() os.remove(im_path)
def load_bagging_model(): filter = ['model*.json'] info_list = listFiles('./saved_models/', filter) if len(info_list) == 0: raise FileNotFoundError('There is no model saved') estimators = [] for file_info in info_list: model = load_model(file_info.baseName()) estimators.append(model) bag = Bagging() bag.set_estimator(estimators) return bag
from common import utils from mitos_extract_anotations import candidateSelection as cs from common.Params import Params as P if __name__ == '__main__': filter = ['*.bmp', '*.png', '*.jpg'] file_list = utils.listFiles(P().basedir + 'normalizado/testHeStain', filter) params = cs.Candidates_extractor_params(file_list) params.candidates_json_save_path = P().basedir + 'anotations/test_cand.json' params.save_candidates_dir_path = P().basedir + 'test/no-mitosis/' params.save_mitosis_dir_path = P().basedir + 'test/mitosis/' params.bsave_img_keypoints = True params.bappend_mitosis_to_json = True cutter = cs.Candidates_extractor(params) cutter.extract()
#import sys #sys.path.append('C:/Users/PelaoT/Desktop/Practica/codigo') from mitos_extract_anotations import candidateSelection as cs from common.utils import listFiles import sys filters = ['*.bmp', '*.png', '*.jpg'] if sys.platform == 'win32': file_list = listFiles( 'C:/Users/PelaoT/Desktop/Practica/dataset/eval/heStain/', filters) params = cs.Candidates_extractor_params(file_list) params.save_candidates_dir_path = 'C:/Users/PelaoT/Desktop/Practica/dataset/eval/no-mitosis/' params.save_mitosis_dir_path = 'C:/Users/PelaoT/Desktop/Practica/dataset/eval/mitosis/' params.candidates_json_save_path = 'C:/Users/PelaoT/Desktop/Practica/dataset/eval/test.json' else: file_list = listFiles('/home/facosta/dataset/normalizado/testHeStain/', filters) params = cs.Candidates_extractor_params(file_list) params.save_candidates_dir_path = '/home/facosta/dataset/test/no-mitosis/' params.save_mitosis_dir_path = '/home/facosta/dataset/test/mitosis/' params.candidates_json_save_path = '/home/facosta/dataset/test//test.json' extractor = cs.Candidates_extractor(params) extractor.extract() # # import cv2 # import numpy as np # # def get_center(rectangle):
im[y,x] = 255 #cv2.imwrite('holap.png', im) return im def findCentroidsByBounRect(point): x,y,w,h = cv2.boundingRect(point) cx = int(x + (w/2)) cy = int(y + (h/2)) return cy, cx baseDir = 'D:/Descargas/mitosis_evaluation_set_A/test/' filter = ['*.csv'] fileList = utils.listFiles(baseDir, filter) jsonDict = {} i= 1 total = len(fileList) for fileInfo in fileList: mitosRegion = [] csvPath = fileInfo.absoluteFilePath() csvFile = open(csvPath) for line in csvFile: splitted = str.split(line, ',') point = generatePoint(splitted) center = findCentroidsByBounRect(point) pointDict = {"row" : center[0], "col" : center[1]}