def get_dataset(dataset_name, root, source, target, train_source_transform, val_transform, train_target_transform=None): if train_target_transform is None: train_target_transform = train_source_transform # load datasets from common.vision.datasets dataset = datasets.__dict__[dataset_name] source_dataset = open_set(dataset, source=True) target_dataset = open_set(dataset, source=False) train_source_dataset = source_dataset(root=root, task=source, download=True, transform=train_source_transform) train_target_dataset = target_dataset(root=root, task=target, download=True, transform=train_target_transform) val_dataset = target_dataset(root=root, task=target, download=True, transform=val_transform) if dataset_name == 'DomainNet': test_dataset = target_dataset(root=root, task=target, split='test', download=True, transform=val_transform) else: test_dataset = val_dataset class_names = train_source_dataset.classes num_classes = len(class_names) return train_source_dataset, train_target_dataset, val_dataset, test_dataset, num_classes, class_names
def main(args: argparse.Namespace): logger = CompleteLogger(args.log, args.phase) print(args) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.center_crop: train_transform = T.Compose([ ResizeImage(256), T.CenterCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) else: train_transform = T.Compose([ ResizeImage(256), T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) val_transform = T.Compose( [ResizeImage(256), T.CenterCrop(224), T.ToTensor(), normalize]) dataset = datasets.__dict__[args.data] source_dataset = open_set(dataset, source=True) target_dataset = open_set(dataset, source=False) train_source_dataset = source_dataset(root=args.root, task=args.source, download=True, transform=train_transform) train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) val_dataset = target_dataset(root=args.root, task=args.target, download=True, transform=val_transform) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) if args.data == 'DomainNet': test_dataset = target_dataset(root=args.root, task=args.target, split='test', download=True, transform=val_transform) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) else: test_loader = val_loader train_source_iter = ForeverDataIterator(train_source_loader) # create model print("=> using pre-trained model '{}'".format(args.arch)) backbone = models.__dict__[args.arch](pretrained=True) num_classes = train_source_dataset.num_classes classifier = Classifier(backbone, num_classes).to(device) # define optimizer and lr scheduler optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True) lr_scheduler = LambdaLR( optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x))**(-args.lr_decay)) # analysis the model if args.phase == 'analysis': # using shuffled val loader val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers) # extract features from both domains feature_extractor = nn.Sequential(classifier.backbone, classifier.bottleneck).to(device) source_feature = collect_feature(train_source_loader, feature_extractor, device) target_feature = collect_feature(val_loader, feature_extractor, device) # plot t-SNE tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.png') tsne.visualize(source_feature, target_feature, tSNE_filename) print("Saving t-SNE to", tSNE_filename) # calculate A-distance, which is a measure for distribution discrepancy A_distance = a_distance.calculate(source_feature, target_feature, device) print("A-distance =", A_distance) return if args.phase == 'test': acc1 = validate(test_loader, classifier, args) print(acc1) return # start training best_h_score = 0. for epoch in range(args.epochs): # train for one epoch train(train_source_iter, classifier, optimizer, lr_scheduler, epoch, args) # evaluate on validation set h_score = validate(val_loader, classifier, args) # remember best acc@1 and save checkpoint torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest')) if h_score > best_h_score: shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best')) best_h_score = max(h_score, best_h_score) print("best_h_score = {:3.1f}".format(best_h_score)) # evaluate on test set classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best'))) h_score = validate(test_loader, classifier, args) print("test_h_score = {:3.1f}".format(h_score)) logger.close()
def main(args: argparse.Namespace): logger = CompleteLogger(args.log, args.phase) print(args) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.center_crop: train_transform = T.Compose([ ResizeImage(256), T.CenterCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) else: train_transform = T.Compose([ ResizeImage(256), T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) val_transform = T.Compose( [ResizeImage(256), T.CenterCrop(224), T.ToTensor(), normalize]) dataset = datasets.__dict__[args.data] """ dataset settings for SECC """ from common.vision.datasets.office31 import Office31 public_classes = Office31.CLASSES[:10] source_private = Office31.CLASSES[10:20] target_private = Office31.CLASSES[20:] source_dataset = open_set(dataset, public_classes, source_private) target_dataset = open_set(dataset, public_classes, target_private) """""" train_source_dataset = source_dataset(root=args.root, task=args.source, download=True, transform=train_transform) train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) train_target_dataset = target_dataset(root=args.root, task=args.target, download=True, transform=train_transform) train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) val_dataset = target_dataset(root=args.root, task=args.target, download=True, transform=val_transform) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) train_source_iter = ForeverDataIterator(train_source_loader) train_target_iter = ForeverDataIterator(train_target_loader) test_loader = val_loader # create model print("=> using pre-trained model '{}'".format(args.arch)) num_classes = train_source_dataset.num_classes backbone = models.__dict__[args.arch](pretrained=True) """ mean teacher model for SECC """ classifier = ImageClassifier(backbone, num_classes, bottleneck_dim=args.bottleneck_dim).to(device) teacher = EmaTeacher(classifier, 0.9) k = 25 """ distribution cluster for SECC """ print("=> initiating k-means clusters") feature_extractor = FeatureExtractor(backbone) cluster_distribution = ClusterDistribution(train_target_loader, feature_extractor, k=k) """ cluster assignment for SECC """ cluster_assignment = ASoftmax( feature_extractor, num_clusters=k, num_features=cluster_distribution.num_features).to(device) """ loss functions for SECC """ kl_loss = nn.KLDivLoss().to(device) conditional_loss = ConditionalEntropyLoss().to(device) consistent_loss = L2ConsistencyLoss().to(device) class_balance_loss = ClassBalanceLoss(num_classes).to(device) # define optimizer and lr scheduler optimizer = SGD(classifier.get_parameters() + cluster_assignment.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) lr_scheduler = LambdaLR( optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x))**(-args.lr_decay)) # analysis the model if args.phase == 'analysis': # extract features from both domains feature_extractor = nn.Sequential(classifier.backbone, classifier.bottleneck).to(device) source_feature = collect_feature(train_source_loader, feature_extractor, device) target_feature = collect_feature(train_target_loader, feature_extractor, device) # plot t-SNE tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.png') tsne.visualize(source_feature, target_feature, tSNE_filename) print("Saving t-SNE to", tSNE_filename) # calculate A-distance, which is a measure for distribution discrepancy A_distance = a_distance.calculate(source_feature, target_feature, device) print("A-distance =", A_distance) return if args.phase == 'test': acc1 = validate(test_loader, classifier, args) print(acc1) return # start training best_h_score = 0. for epoch in range(args.epochs): # train for one epoch train(train_source_iter, train_target_iter, classifier, teacher, cluster_assignment, cluster_distribution, consistent_loss, class_balance_loss, kl_loss, conditional_loss, optimizer, lr_scheduler, epoch, args) # evaluate on validation set h_score = validate(val_loader, classifier, args) # remember best acc@1 and save checkpoint torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest')) if h_score > best_h_score: shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best')) best_h_score = max(h_score, best_h_score) print("best_h_score = {:3.1f}".format(best_h_score)) # evaluate on test set classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best'))) h_score = validate(test_loader, classifier, args) print("test_h_score = {:3.1f}".format(h_score)) logger.close()