示例#1
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         naiveBayesVo = json.loads(jsonStr, object_hook=dictToNaiveBayesVo)
         base_path = naiveBayesVo.bayesDir
         x_file_name = naiveBayesVo.trainxFileName
         y_file_name = naiveBayesVo.trainyFileName
         # 入参训练数据读取
         (x_train, x_test) = get_data(base_path + x_file_name)
         # 出参训练数据读取
         y_train_dict = get_y_train_data(base_path + y_file_name)
         clf = GaussianNB()
         predictDataList = []
         # 创建预测值文件对象
         for (station, y_train) in y_train_dict.items():
             clf.fit(x_train, y_train)
             y_predict = clf.predict(x_test.reshape(1, -1))
             # 写预测值
             siteData = com.SiteData(str(station), str(y_predict[0]))
             predictDataList.append(siteData.__dict__)
         commonResponse = com.CommonResponse(
             com.successCode, com.successMsg,
             dict([("list", predictDataList)]))
     except BaseException as e:
         print("执行朴素贝叶斯算法失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e),
                                             dict([("list", [])]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#2
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         rhythmVo = json.loads(jsonStr, object_hook=dictToRhythmVo)
         datas = load_data(rhythmVo.sampleDataPath)
         length = len(datas) - 1
         observeData = datas[length]
         index = 0
         maxSimilarity = Similarity(np.array(observeData), np.array(datas[0]))
         if pd.isnull(maxSimilarity):
             maxSimilarity = 0
         for i in range(1,length):
             s = Similarity(np.array(observeData), np.array(datas[i]))
             if pd.isnull(s):
                 s = 0
             if s > maxSimilarity:
                 maxSimilarity = s
                 index = i
         commonResponse = com.CommonResponse(com.successCode, com.successMsg, dict([("obj", index)]))
     except BaseException as e:
         print("执行韵律算法失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e), dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#3
0
 def post(self):
     jsonByte = self.request.body
     jsonStr = jsonByte.decode("utf-8")
     mgfVo = json.loads(jsonStr, object_hook=dictToMgfVo)
     dataFilePath = mgfVo.sampleDataPath
     file = open(dataFilePath, 'r')
     predictDataList = []
     for line in file.readlines():
         line_arr = line.split(",")
         station_id = line_arr.pop(0)
         X = load_data(line_arr)  #数据转float数组
         N, = X.shape  # shape返回数组维度,资料年份长度
         NN = 1  # 需要预测的年数
         N1 = N + NN
         IN = 10  # 循环次数
         Y = np.zeros(shape=N1)
         try:
             ACTA(X, Y, N, NN, N1, IN)
             predict_value = Y[Y.size - 1]
             siteData = com.SiteData(str(station_id), str(predict_value))
             predictDataList.append(siteData.__dict__)
         except TypeError as e:
             print(station_id, "预测失败:", e)
     if len(predictDataList) == 0:
         commonResponse = com.CommonResponse(
             com.errorCode, "每个站点都预测失败", dict([("list", predictDataList)]))
     else:
         commonResponse = com.CommonResponse(
             com.successCode, com.successMsg,
             dict([("list", predictDataList)]))
     self.write(commonResponse.__dict__)
示例#4
0
 def post(self):
     try:
         commonResponse = com.CommonResponse(com.errorCode, "无同聚类数据",
                                             dict([("list", [])]))
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         kmeansVo = json.loads(jsonStr, object_hook=dictToKmeansVo)
         k = 8  # 聚类中心的个数
         data = load_data(kmeansVo.dataPath)
         while k >= 2:
             years = get_index_means(data, k)
             if len(years) != 0:
                 print("聚类成功,k={}".format(k))
                 commonResponse = com.CommonResponse(
                     com.successCode, com.successMsg,
                     dict([("list", years)]))
                 break
             k = k - 1
     except BaseException as e:
         print("执行kmeans失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e),
                                             dict([("list", [])]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#5
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         svmVo = json.loads(jsonStr, object_hook=svm.dictToSvmVo)
         file_name = svmVo.trainDataPath
         model = svmVo.modelPath
         # 1、导入训练数据
         dataSet, labels = load_data_libsvm(file_name)
         # 2、训练SVM模型
         C = 0.6
         toler = 0.001
         maxIter = 500
         svm_model = svm.SVM_training(dataSet, labels, C, toler, maxIter)
         # 3、计算训练的准确性
         svm.cal_accuracy(svm_model, dataSet, labels)
         # 4、保存最终的SVM模型
         svm.save_svm_model(svm_model, model)
         commonResponse = com.CommonResponse(com.successCode,
                                             com.successMsg,
                                             dict([("obj", 1)]))
     except BaseException as e:
         print("执行支持向量机-生成模型失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e),
                                             dict([("obj", 1)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#6
0
 def post(self):
     try:
         # 1、导入训练数据
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         decisionTreeVo = json.loads(jsonStr,
                                     object_hook=dictToDecisionTreeVo)
         data_train = load_data(decisionTreeVo.trainDataPath)
         # 2、创建CART分类树
         tree = build_tree(data_train)
         # 3、获取样本数据
         test_data = load_data(decisionTreeVo.testDataPath)
         # 4、对样本进行预测
         result = list(predict(test_data[0], tree).keys())[0]
         commonResponse = com.CommonResponse(com.successCode,
                                             com.successMsg,
                                             dict([("obj", result)]))
     except BaseException as e:
         print("执行决策树算法失败:{}".format(e))
         commonResponse = com.CommonResponse(
             com.errorCode, "{}".format(e),
             dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#7
0
 def post(self):
     global commonResponse
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         tccImageVo = json.loads(jsonStr, object_hook=dictToTccImageVo)
         result = create_svg(tccImageVo)
         commonResponse = com.CommonResponse(com.successCode,
                                             com.successMsg,
                                             dict([("obj", result)]))
     except BaseException as e:
         print("执行TCC画图失败:{}".format(e))
         commonResponse = com.CommonResponse(
             com.errorCode, "{}".format(e),
             dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#8
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         svmVo = json.loads(jsonStr, object_hook=sv.dictToSvmVo)
         file_name = svmVo.testDataPath
         model_name = svmVo.modelPath
         # 1、导入测试数据
         test_data = load_test_data(file_name)
         # 2、导入SVM模型
         svm_model = load_svm_model(model_name)
         # 3、得到预测值
         prediction = get_prediction(test_data, svm_model)
         commonResponse = com.CommonResponse(com.successCode, com.successMsg, dict([("obj", prediction[0])]))
     except BaseException as e:
         print("执行支持向量机算法失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e), dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#9
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         pcaVo = json.loads(jsonStr, object_hook=dictToPcaVo)
         feature_path = pcaVo.sampleDataPath
         label_path = pcaVo.labelDataPath
         test_path = pcaVo.forecastDataPath
         data = loadDataSet(feature_path)
         lowDDataMat, reconMat = pca(data, 3)
         y = load_data(label_path)
         w_ls = least_square(mat(lowDDataMat), y)
         testData = loadDataSet(test_path)
         testlowDDataMat, testreconMat = pca(testData, 3)
         predict = get_prediction(mat(testlowDDataMat), mat(w_ls))
         commonResponse = com.CommonResponse(com.successCode, com.successMsg, dict([("obj", predict[-1, 0].real)]))
     except BaseException as e:
         print("执行主成分分析失败:{}".format(e))
         commonResponse = com.CommonResponse(com.errorCode, "{}".format(e), dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#10
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         vectorWindVo = json.loads(jsonStr, object_hook=dictToVectorWindVo)
         x = vectorWindVo.lons
         y = vectorWindVo.lats
         u = vectorWindVo.uwindValues
         v = vectorWindVo.vwindValues
         fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1)
         ax.barbs(x, y, u, v, length=4, pivot='middle')
         plt.xticks([])
         plt.yticks([])
         plt.axis('off')
         imageDir = vectorWindVo.imageDir
         if os.path.exists(imageDir) == False:
             os.makedirs(imageDir)
         imageName = vectorWindVo.imageName
         plt.savefig(imageDir + imageName,
                     format='svg',
                     bbox_inches='tight',
                     transparent=True,
                     dpi=600)
         plt.clf()
         plt.close(fig)
         commonResponse = com.CommonResponse(
             com.successCode, com.successMsg,
             dict([("obj", imageDir + imageName)]))
     except BaseException as e:
         print("执行矢量风出图失败:{}".format(e))
         commonResponse = com.CommonResponse(
             com.errorCode, "{}".format(e),
             dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#11
0
 def post(self):
     try:
         jsonByte = self.request.body
         jsonStr = jsonByte.decode("utf-8")
         multipleRegressionVo = json.loads(
             jsonStr, object_hook=dictToMultipleRegressionVo)
         # 1、导入数据
         data_train = load_data(multipleRegressionVo.resultDataFilePath)
         # 3、获取样本数据
         sample_data = load_data(multipleRegressionVo.sampleDataFilePath)
         test_data = multipleRegressionVo.testDataFilePath
         # 4、对样本进行预测
         result = multiple_regression(data_train, sample_data, test_data)
         commonResponse = com.CommonResponse(com.successCode,
                                             com.successMsg,
                                             dict([("obj", result[0][0])]))
     except BaseException as e:
         print("执行多元回归算法失败:{}".format(e))
         commonResponse = com.CommonResponse(
             com.errorCode, "{}".format(e),
             dict([("obj", com.missingValues)]))
     finally:
         # 返回数据
         self.write(commonResponse.__dict__)
示例#12
0
    def post(self):
        try:
            jsonByte = self.request.body
            jsonStr = jsonByte.decode("utf-8")
            optimalSubsetVo = json.loads(jsonStr,
                                         object_hook=dictToOptimalSubsetVo)
            txtPath = optimalSubsetVo.sampleDataPath
            feature_num = int(optimalSubsetVo.featureNum)
            col_row_num = (feature_num // 100 + 1) * 100

            ff1 = pd.read_csv(txtPath, sep='\\s+', header=None)
            ff2 = pd.DataFrame(ff1)
            nums = ff1.shape[0]

            xxCol = col_row_num
            xfCol = col_row_num
            xfRow = col_row_num
            n = feature_num

            nsize = n // 10 + 1
            n1 = n + 1

            # 创建二维数组
            ex = np.zeros(shape=(30, 30), dtype=float)
            cc = np.zeros(shape=(30, 30), dtype=float)
            coe = np.zeros(shape=(30, 30), dtype=float)
            # 创建30*100的数组(指数先改为30*200)(高度场30*2800)
            xx = np.zeros(shape=(30, xxCol), dtype=float)
            # 创建100*100的数组(指数先改为200*200)(高度场2800*2800)
            xf = np.zeros(shape=(xfRow, xfCol), dtype=float)
            csca = []
            ihh = []

            for i in range(0, 30):
                csca.append(0)
                ihh.append(0)
            csca = np.array(csca, dtype=float)
            ihh = np.array(ihh)

            x1 = []
            x2 = []
            x = []
            for j in range(0, n1):
                x1.append(0)
                x2.append(0)
                x.append(0)
            x1 = np.array(x1, dtype=float)
            x2 = np.array(x2, dtype=float)
            x = np.array(x, dtype=float)
            '''
            ff1和ff2获取的二维数组数据有缺失的,比如此例中最后一行的最后一个数据,
            fillna缺测数据填充为参数值
            '''

            f1 = ff2.fillna(32766)
            f2 = ff2.fillna(-999)

            # 气候指数,需要的训练集指数刚好是10的整数位,最后一组需要求最优子集测试回归的数据,刚好就少一列,需要补回来
            # 前面几组,有1个特征向量占一行,不会出现最后一组的情况
            if feature_num % 10 == 0:
                f32766 = pd.DataFrame([[
                    32766, 32766, 32766, 32766, 32766, 32766, 32766, 32766,
                    32766, 32766
                ]])
                # ignore_index=True True 添加时,需要索引,默认值是false
                f1 = f1.append(f32766, ignore_index=True)
                f0 = pd.DataFrame([[
                    -999, -999, -999, -999, -999, -999, -999, -999, -999, -999
                ]])
                f2 = f2.append(f0, ignore_index=True)

            dat = []
            xy = []
            for num in range(0, nums):
                f12 = []
                f13 = []
                # shape查看数组维数,shape[0]=11,shape[1]=143 或 2702
                for feature_index in range(0, f1.shape[1]):
                    f12.append(f1[feature_index][num])
                    f13.append(f2[feature_index][num])
                for bb in f12:
                    if bb == 32766:
                        for bb1 in range(0, f12.count(32766)):
                            f12.remove(bb)
                f12 = np.array(f12)
                f13 = np.array(f13)
                dat.append(f12)
                # xy.txt读取的数据,不满数组的数据补0操作
                xy.append(f13)

            dat = np.array(dat)
            dat_mean = []
            for i in range(0, len(dat)):
                dat_mean.append(np.nanmean(dat[i][0:n]))

            a1 = []
            for i in range(0, nums):
                for j in range(0, nums):
                    s = 0
                    for k in range(0, n):
                        s += (xy[i][k] * xy[j][k])
                    s -= (n * dat_mean[i] * dat_mean[j])
                    a1.append(s)

            a = []
            for i in range(0, nums):
                a2 = []
                # 魔法数值 6 ,气候指数修改为nums
                for j in range(i * nums, i * nums + nums):
                    a2.append(a1[j])
                a.append(a2)
            a = np.array(a)

            sto = a[nums - 1][nums - 1]
            # **求次方
            ih = 2**(nums - 2) - 1
            ks = []
            for i in range(0, ih + 1):
                ks.append(0)

            ks[0] = 1
            for k in range(1, nums - 2):
                j = 2**k
                ks[j - 1] = k + 1
                for i in range(0, j - 1):
                    m = ks[j - i - 2]
                    ks[j + i] = -m
            ks[ih] = 5

            nb = 0
            rss = []
            ma = []
            for i in range(0, nums - 1):
                rss.append(10.0**20)
                ma.append(0)
            rss = np.array(rss)
            ma = np.array(ma)

            def csc():
                le = np.array([[0 for col in range(3)] for row in range(3)],
                              dtype=float)
                p = []
                q = []
                for i in range(0, 3):
                    p.append(0)
                    q.append(0)
                p = np.array(p, dtype=float)
                q = np.array(q, dtype=float)
                v = 0.0
                u = 0.0
                for i in range(0, n - 1):
                    u += abs(x1[i + 1] - x1[i]) / (n - 1)
                    v += abs(x[i + 1] - x[i]) / (n - 1)
                for i in range(0, 3):
                    for j in range(0, 3):
                        le[i][j] = 0.0
                for i in range(0, n - 1):
                    xp = x[i + 1] - x[i]
                    xp1 = x1[i + 1] - x1[i]
                    if (xp1 >= u and xp >= v):
                        le[0][0] += 1
                    if (xp1 >= u and xp <= 0):
                        le[2][0] += 1
                    if (xp1 >= u and xp > 0 and xp < v):
                        le[1][0] += 1
                    if (xp1 > 0 and xp1 < u and xp >= v):
                        le[0][1] += 1
                    if (xp1 > 0 and xp1 < u and xp > 0 and xp < v):
                        le[1][1] += 1
                    if (xp1 > 0 and xp1 < u and xp <= 0):
                        le[2][1] += 1
                    if (xp1 <= 0 and xp >= v):
                        le[0][2] += 1
                    if (xp1 <= 0 and xp > 0 and xp < v):
                        le[1][2] += 1
                    if (xp1 <= 0 and xp <= 0):
                        le[2][2] += 1
                le = np.array(le)
                le = le.T
                r1 = 0.0
                r2 = 0.0
                r3 = 0.0
                for i in range(0, 3):
                    p[i] = 0.0
                    q[i] = 0.0
                for i in range(0, 3):
                    for j in range(0, 3):
                        if le[j][i] != 0.0:
                            r1 += (le[j][i] * (math.log(float(le[j][i]))))
                for i in range(0, 3):
                    for j in range(0, 3):
                        p[i] += le[j][i]
                        q[i] += le[i][j]
                for i in range(0, 3):
                    if (q[i] != 0.0):
                        r2 += (q[i] * (math.log(q[i])))
                    if (p[i] != 0.0):
                        r3 += (p[i] * (math.log(p[i])))
                s1 = 2 * (r1 + (n - 1) * (math.log(float(n - 1))) - (r2 + r3))
                xm1 = 0.0
                for i in range(0, n):
                    xm1 += (x[i] / float(n))
                qk = 0.0
                qx = 0.0
                for i in range(0, n):
                    qk += ((x[i] - x1[i]) * (x[i] - x1[i]) / n)
                    qx += ((x[i] - xm1) * (x[i] - xm1) / n)
                s2 = (n - (k + 1)) * (1 - qk / qx)
                csc3 = s1 + s2
                return csc3

            def reg2(it):
                kk = it - 1
                if (abs(a[kk][kk]) > (10**(-12))):
                    for j in range(0, nums):
                        for i in range(0, nums):
                            if (i != kk and j != kk):
                                a[i][j] -= a[kk][j] * a[i][kk] / a[kk][kk]
                            else:
                                continue
                    for j in range(0, nums):
                        if (j != kk):
                            a[j][kk] = a[j][kk] / a[kk][kk]
                            a[kk][j] = -a[kk][j] / a[kk][kk]
                        else:
                            continue
                    a[kk][kk] = 1 / a[kk][kk]
                ma[kk] = 0
                if (a[nums - 1][nums - 1] <= rss[nb - 1]):
                    rss[nb - 1] = a[nums - 1][nums - 1]
                    for j in range(0, nums - 1):
                        ex[j][nb - 1] = ma[j]
                        coe[j][nb - 1] = a[nums - 1][j]
                else:
                    return ex, coe, ma, rss, a, nb, ts
                return ex, coe, ma, rss, a, nb, ts

            def reg1(it):
                kk = it - 1
                if (abs(a[kk][kk]) > (10**(-12))):
                    for j in range(0, nums):
                        for i in range(0, nums):
                            if (i != kk and j != kk):
                                a[i][j] -= a[kk][j] * a[i][kk] / a[kk][kk]
                            else:
                                continue
                    for j in range(0, nums):
                        if (j != kk):
                            a[j][kk] = a[j][kk] / a[kk][kk]
                            a[kk][j] = -a[kk][j] / a[kk][kk]
                        else:
                            continue
                    a[kk][kk] = 1 / a[kk][kk]
                ma[kk] = 1
                if (a[nums - 1][nums - 1] <= rss[nb - 1]):
                    rss[nb - 1] = a[nums - 1][nums - 1]
                    for j in range(0, nums - 1):
                        ex[j][nb - 1] = ma[j]
                        coe[j][nb - 1] = a[nums - 1][j]
                else:
                    return ex, coe, ma, rss, a, nb, ts
                return ex, coe, ma, rss, a, nb, ts

            ts = 0
            for m in range(0, ih + 1):
                it = abs(ks[m])
                if ks[m] > 0:
                    nb += 1
                    ts += 1
                    ex, coe, ma, rss, a, nb, ts = reg1(it)
                else:
                    nb -= 1
                    ts += 1
                    ex, coe, ma, rss, a, nb, ts = reg2(it)

            for m in range(0, ih):
                it = abs((-1) * ks[ih - 1 - m])
                if (-1) * ks[ih - 1 - m] > 0:
                    nb += 1
                    ts += 1
                    ex, coe, ma, rss, a, nb, ts = reg1(it)
                else:
                    nb -= 1
                    ts += 1
                    ex, coe, ma, rss, a, nb, ts = reg2(it)

            for k in range(0, nums - 1):
                s = rss[k]
                c = 0.0
                for j in range(0, nums - 1):
                    if ex[j][k] != 0:
                        c += (coe[j][k] * dat_mean[j])
                    else:
                        continue
                c = dat_mean[nums - 1] - c

                mm = 0
                for j in range(0, nums - 1):
                    if ex[j][k] != 0.0:
                        mm += 1
                        cc[mm - 1][k] = coe[j][k]
                        for i in range(0, n1):
                            xx[mm - 1][i] = xy[j][i]
                for i in range(0, n1):
                    xf[i][k] = c
                    for j in range(0, mm):
                        xf[i][k] = xf[i][k] + cc[j][k] * xx[j][i]
                    x[i] = xy[nums - 1][i]
                    x1[i] = xf[i][k]
                for j in range(0, n):
                    x2[j] = xf[j][k] - x[j]
                w = 0.0
                for j in range(0, n):
                    w += x2[j]**2
                v1 = np.sqrt(w / n)
                csca[k] = csc()

            aa = 0.0
            for i in range(0, nums - 1):
                if (csca[i] > aa):
                    aa = csca[i]
            for i in range(0, nums - 1):
                if csca[i] == aa:
                    ihh[0] = i

            kk1 = ihh[0]
            for j in range(0, nums - 1):
                if (j == kk1):
                    for i in range(0, n1):
                        x1[i] = xf[i][j]
                else:
                    continue

            w = 0.0
            for i in range(0, n):
                w += (x[i] - x1[1])**2
            v = np.sqrt(w / n)
            commonResponse = com.CommonResponse(
                com.successCode, com.successMsg,
                dict([("obj", '%.2f' % x1[n])]))
        except BaseException as e:
            print("执行最优子集失败:{}".format(e))
            commonResponse = com.CommonResponse(
                com.errorCode, "{}".format(e),
                dict([("obj", com.missingValues)]))
        finally:
            # 返回数据
            self.write(commonResponse.__dict__)
示例#13
0
    def post(self):
        try:
            jsonByte = self.request.body
            jsonStr = jsonByte.decode("utf-8")
            svgDto = json.loads(jsonStr, object_hook=dictToSvgDto)
            # 读取txt文件
            lat = svgDto.lats
            lon = svgDto.lons
            val = svgDto.values
            minLon = svgDto.areaMinLon
            maxLon = svgDto.areaMaxLon
            minLat = svgDto.areaMinLat
            maxLat = svgDto.areaMaxLat
            lonLength = svgDto.lonLength
            latLength = svgDto.latLength

            # 经纬度处理
            olon = np.linspace(minLon, maxLon, lonLength)
            olat = np.linspace(minLat, maxLat, latLength)

            # 转成地理经纬度
            olon, olat = np.meshgrid(olon, olat)

            # 插值处理
            func = Rbf(lon, lat, val, function='linear')
            rhu_data_new = func(olon, olat)

            # 自定义色卡处理
            levels = svgDto.levels
            my_cmap = colors.ListedColormap(svgDto.colorMap)
            my_cmap.set_under(svgDto.underColor)
            my_cmap.set_over(svgDto.overColor)
            norm3 = colors.BoundaryNorm(levels, my_cmap.N)

            # 投影方式
            projection = ccrs.Mercator()

            # 创建图实例 创建设置像素
            fig = plt.figure(dpi=300)
            ax = fig.add_subplot(111, projection=projection)

            # 设定要显示的边界区域
            ax.set_extent([minLon, maxLon, minLat, maxLat], crs=projection)

            # 等值面处理
            cs = ax.contourf(olon,
                             olat,
                             rhu_data_new,
                             levels=levels,
                             cmap=my_cmap,
                             norm=norm3,
                             extend='both',
                             transform=projection,
                             alpha=1)

            # 读取shp文件,获取要裁剪的区域clip(环流图不用裁剪)
            shp_name = svgDto.shpPath
            if shp_name:
                sf = shapefile.Reader(shp_name, encoding="gbk")
                for shp_record in sf.shapeRecords():
                    vertices = []
                    codes = []
                    pts = shp_record.shape.points
                    prt = list(shp_record.shape.parts) + [len(pts)]
                    for i in range(len(prt) - 1):
                        for j in range(prt[i], prt[i + 1]):
                            vertices.append((pts[j][0], pts[j][1]))
                        codes += [Path.MOVETO]
                        codes += [Path.LINETO] * (prt[i + 1] - prt[i] - 2)
                        codes += [Path.CLOSEPOLY]
                    clip = Path(vertices, codes)
                    clip = PathPatch(clip, transform=ax.transData)

                # 裁剪显示区域
                for contour in cs.collections:
                    contour.set_clip_path(clip)

            # cartopy 设置背景透明及去除边框
            ax.outline_patch.set_visible(False)
            ax.background_patch.set_visible(False)
            #判断目录是否存在,不存在则创建
            save_path = svgDto.savePath
            if os.path.exists(save_path) == False:
                os.makedirs(save_path)
            image_name = svgDto.imageName
            # 保存图片,tight让保存的图片更加紧促
            plt.savefig(save_path + image_name,
                        bbox_inches='tight',
                        transparent=True,
                        pad_inches=0)
            plt.clf()
            plt.close(fig)
            commonResponse = com.CommonResponse(
                com.successCode, com.successMsg,
                dict([("obj", save_path + image_name)]))
        except BaseException as e:
            print("执行svg出图失败:{}".format(e))
            commonResponse = com.CommonResponse(
                com.errorCode, "{}".format(e),
                dict([("obj", com.missingValues)]))
        finally:
            # 返回数据
            self.write(commonResponse.__dict__)