random_seed = int(random_seed) start = int(start) stop = int(stop) if static_use == "True": # Use non-zero value of penalty lambda_cv_range = [0, 0.001, 0.01, 0.1] else: lambda_cv_range = [0] A_store = pickle.load( open( os.path.expanduser( '~/git/scalable-nilm/aaai18/predictions/case-{}-graph_{}_{}_{}_{}_As.pkl' .format(case, source, constant_use, start, stop)), 'r')) source_df, source_dfc, source_tensor, source_static = create_region_df_dfc_static( source, year, start, stop) target_df, target_dfc, target_tensor, target_static = create_region_df_dfc_static( target, year, start, stop) # # using cosine similarity to compute L source_L = get_L(source_static) target_L = get_L(target_static) if setting == "transfer": name = "{}-{}-{}-{}".format(source, target, random_seed, train_percentage) else: name = "{}-{}-{}".format(target, random_seed, train_percentage) # Seasonal constant constraints if constant_use == 'True': T_constant = np.ones(stop - start).reshape(-1, 1)
""" Run all the code on HCDM """ import os import sys import pickle import pandas as pd from common import APPLIANCES_ORDER, compute_rmse_fraction, create_region_df_dfc_static source, target, start, stop = sys.argv[1:] start = int(start) stop = int(stop) year=2014 target_df, target_dfc, target_tensor, target_static = create_region_df_dfc_static(target, year, start, stop) df = pd.DataFrame(target_static, index=target_df.index) idx = df.dropna(how='any').index out = {} params = {} for case in [2, 4]: out[case] = {} params[case] = {} for constant_use in ['True','False']: out[case][constant_use] = {} params[case][constant_use] = {} for static_use in ['True', 'False']: out[case][constant_use][static_use] = {}
global source, source_df, source_dfc, source_tensor, source_static global case global T_constant global start, stop global source_L appliance_index = {appliance: APPLIANCES_ORDER.index(appliance) for appliance in APPLIANCES_ORDER} APPLIANCES = ['fridge', 'hvac', 'wm', 'mw', 'oven', 'dw'] year = 2014 case, source, constant_use, start, stop = sys.argv[1:] case = int(case) start = int(start) stop = int(stop) source_df, source_dfc, source_tensor, source_static = create_region_df_dfc_static(source, year, start, stop) # # using cosine similarity to compute L source_L = get_L(source_static) # Seasonal constant constraints if constant_use == 'True': T_constant = np.ones(stop-start).reshape(-1,1) else: T_constant = None # End pred = {} n_splits = 10 algo = 'adagrad'