def main(session, noun=10, verb=2): raw = common.load_input(2, session) lines = parse(raw) lines[1] = noun lines[2] = verb return run(lines)
def main(session): raw = common.load_input(1, session) lines = list(map(int, raw.splitlines())) part1 = sum(map(fuel, lines)) part2 = sum(map(total_fuel_recursive, lines)) print(f"Part 1: {part1}") print(f"Part 2: {part2}")
def main(session=None): raw = common.load_input(3, session) lines = raw.splitlines() wires = list(map(wire2multiline, [line.split(',') for line in lines])) intersections = wires[0].intersection(wires[1]) distances = list(map(manhattan_distance, intersections)) distances.sort() print (f"Part 1: {distances[1]}") distances2 = list(map(wire_length_gen(wires), intersections[1:])) distances2.sort() print (f"Part 2: {distances2[1]}")
save_to_value_store(value_name, value) p = publish_value t = start_stop_timer outcome_diagnosis_pattern = ("I") #|| input use_death_as_outcome = False #|| input followup_period_years = 5 #|| input #load_input_run_name = "T2D_timesplit__Stroke__v14" load_input_run_name = "T2D_timesplit__CKD_N17-N19__v14" load_input_shared_storage_name = "T2D__to__OUTCOMES_MIX_v14_1__SHARED_DATA" subpop_lbnrs = load_input(load_input_run_name, "subpop_lbnrs", load_input_shared_storage_name) #|| input first_subpop_event_df = load_input(load_input_run_name, "first_subpop_event_df", load_input_shared_storage_name) #|| input subpop_cpr_df = load_input(load_input_run_name, "subpop_cpr_df", load_input_shared_storage_name) #|| input subpop_birthplace_df = load_input(load_input_run_name, "subpop_birthplace_df", load_input_shared_storage_name) #|| input subpop_death_causes_df = load_input(load_input_run_name, "subpop_death_causes_df", load_input_shared_storage_name) #|| input subpop_sks_df = load_input(load_input_run_name, "subpop_sks_df", load_input_shared_storage_name) #|| input subpop_diag_df = load_input(load_input_run_name, "subpop_diag_df", load_input_shared_storage_name) #|| input subpop_prescriptions_df = load_input(load_input_run_name, "subpop_prescriptions_df", load_input_shared_storage_name) #|| input subpop_ssr_df = load_input(load_input_run_name, "subpop_ssr_df", load_input_shared_storage_name) #|| input current_addresses_df = load_input(load_input_run_name, "current_addresses_df", load_input_shared_storage_name) #|| input past_addresses_df = load_input(load_input_run_name, "past_addresses_df", load_input_shared_storage_name) #|| input past_archive_addresses_df = load_input(load_input_run_name, "past_archive_addresses_df", load_input_shared_storage_name) #|| input
#load_input_run_name = "T2D_timesplit__Stroke__v14" load_input_shared_storage_name = "T2D__to__OUTCOMES_MIX_v14_1__SHARED_DATA" #%% #|| action_name = "Describe Fit Results" action_description = "" action_input = {"fit_results", "trainX", "testX", "trainY", "testY", "patient_feature_vector___index__to__feature__list", "testX_index__to__patient_feature_vector_indexes", "patient_feature_vector___index__to__lbnr__list", "subpop_basic_df"} action_output = {"model_type_summary"} #|| #%% #fit_results = load_input(load_input_run_name, "ExGradientBoost_count__fit_results", load_input_shared_storage_name) #|| input #fit_results = load_input(load_input_run_name, "LR_aux__fit_results", load_input_shared_storage_name) #|| input fit_results = load_input(load_input_run_name, "ExGradientBoost_count__fit_results", load_input_shared_storage_name) #|| input #trainX = load_input(load_input_run_name, "aux__trainX", load_input_shared_storage_name) #|| input trainX = load_input(load_input_run_name, "count__trainX", load_input_shared_storage_name) #|| input trainY = load_input(load_input_run_name, "trainY", load_input_shared_storage_name) #|| input #testX = load_input(load_input_run_name, "aux__testX", load_input_shared_storage_name) #|| input testX = load_input(load_input_run_name, "count__testX", load_input_shared_storage_name) #|| input testY = load_input(load_input_run_name, "testY", load_input_shared_storage_name) #|| input #valX = load_input(load_input_run_name, "aux__valX", load_input_shared_storage_name) #|| input valX = load_input(load_input_run_name, "count__valX", load_input_shared_storage_name) #|| input valY = load_input(load_input_run_name, "valY", load_input_shared_storage_name) #|| input trainX_index__to__patient_feature_vector_indexes = load_input(load_input_run_name, "trainX_index__to__patient_feature_vector_indexes", load_input_shared_storage_name) #|| input testX_index__to__patient_feature_vector_indexes = load_input(load_input_run_name, "testX_index__to__patient_feature_vector_indexes", load_input_shared_storage_name) #|| input valX_index__to__patient_feature_vector_indexes = load_input(load_input_run_name, "valX_index__to__patient_feature_vector_indexes", load_input_shared_storage_name) #|| input patient_feature_vector___index__to__lbnr__list = load_input(load_input_run_name, "patient_feature_vector___index__to__lbnr__list", load_input_shared_storage_name) #|| input patient_feature_vector___index__to__feature__list = load_input(load_input_run_name, "patient_feature_vector___index__to__feature__list", load_input_shared_storage_name) #|| input
pd.options.display.max_rows = 30 #%% #Additional data that i had to recalculate for publication purposes #Print poulation sizes including followup filtering from datetime import datetime, timedelta last_calendar_day_of_data = datetime(2016, 1, 1) last_day_of_data = last_calendar_day_of_data - timedelta(days=365 * 5) for i in range(5): load_input_run_name = f"T2D_{i}_timesplit__MI__v14" if i != 0 else "T2D__timesplit__MI__v14" load_input_shared_storage_name = f"T2D_{i}__to__OUTCOMES_MIX_v14_1__SHARED_DATA" if i != 0 else "T2D__to__OUTCOMES_MIX_v14_1__SHARED_DATA" subpop_cpr_df = load_input(load_input_run_name, "subpop_cpr_df", load_input_shared_storage_name) #|| input first_subpop_event_df = load_input( load_input_run_name, "first_subpop_event_df", load_input_shared_storage_name) #|| input filtered_first_subpop_event_df = first_subpop_event_df[ first_subpop_event_df["first_subpop_event"] < last_day_of_data] filtered_cpr_df = pd.merge(subpop_cpr_df, filtered_first_subpop_event_df, left_index=True, right_index=True, how="right") print("{}: # {}\t%W {:.3f}\tage {:.3f}".format( i, filtered_cpr_df.shape[0], 100 * float(filtered_cpr_df[filtered_cpr_df["C_KON"] == "K"].shape[0]) /
#!/usr/bin/env python3 import numpy as np from common import load_input from common import sigmoid inputs, labels, labels_1hot, (K, m, n) = load_input('predict.csv') weights_file = 'weights.csv' thetas = np.loadtxt(weights_file, delimiter=',') print(f'loaded weights from {weights_file}') for i in range(len(inputs)): image = inputs[i, :] image = image.reshape(image.shape[0], 1) label = labels[i] print(f'\nimage {i} has label {label}') ps = sigmoid(thetas.dot(image)) top_i = np.argmax(ps) top = np.squeeze(ps[top_i]) print(f'prediction: {top_i} with {top * 100:.3f}%') for k in range(len(ps)): p = np.squeeze(ps[k]) print(f'\tP({k}) = {p * 100:7.3f}%')
#!/usr/bin/env python3 import numpy as np from common import load_input from common import sigmoid inputs, labels, labels_1hot, (K, m, n) = load_input('train.csv') thetas = np.random.rand(K, n) alpha = 1e-3 iters = int(20_000) X = inputs for k in range(K): print(f'train classifier {k} with {m} examples for {iters} iterations') theta = thetas[k].reshape(n, 1) Y = labels_1hot[k].reshape(m, 1) for i in range(iters): z = X.dot(theta) a = sigmoid(z) diff = a - Y grad = X.T.dot(diff) theta -= (alpha / m) * grad if i == iters - 1: pass # TODO: calculate cost