示例#1
0
def run_inverse():
    """Invert the remote measurement"""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_inversion.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    out = Output(config, iv)
    geom = None

    # Get our measurement from the simulation results, and invert
    rdn_meas, wl = spectrumLoad(config['input']['measured_radiance_file'])
    state_est = iv.invert(rdn_meas, geom, out)

    # Calculate uncertainties at the solution state, write result
    rfl_est, rdn_est, path_est, S_hat, K, G =\
        iv.forward_uncertainty(state_est, rdn_meas, geom)
    out.write_spectrum(state_est,
                       rfl_est,
                       rdn_est,
                       path_est,
                       rdn_meas,
                       rdn_sim=None,
                       geom=geom)
    assert True
    return state_est
示例#2
0
def main():

    desc = "Add noise to a radiance spectrum or image"
    parser = argparse.ArgumentParser(description=desc)
    parser.add_argument('config', type=str, metavar='INPUT')
    args = parser.parse_args(sys.argv[1:])
    config = json_load_ascii(args.config, shell_replace=True)
    configdir, configfile = split(abspath(args.config))

    infile = expand_path(configdir, config['input_radiance_file'])
    outfile = expand_path(configdir, config['output_radiance_file'])
    instrument = Instrument(config['instrument_model'])
    geom = Geometry()

    if infile.endswith('txt'):

        rdn, wl = spectrumLoad(infile)
        Sy = instrument.Sy(rdn, geom)
        rdn_noise = rdn + multivariate_normal(zeros(rdn.shape), Sy)

        with open(outfile, 'w') as fout:
            for w, r in zip(wl, rdn_noise):
                fout.write('%8.5f %8.5f' % (w, r))
    else:

        raise ValueError('image cubes not yet implemented')
示例#3
0
    def __init__(self, config, inverse):
        """Initialization specifies retrieval subwindows for calculating
        measurement cost distributions"""

        self.iv = inverse
        self.wl = self.iv.fm.instrument.wl
        self.fwhm = self.iv.fm.instrument.fwhm
        self.windows = inverse.windows
        self.winidx = inverse.winidx

        self.output = Bunch(config['output'])
        for field in [
                'data_dump_file', 'algebraic_inverse_file',
                'estimated_reflectance_file', 'modeled_radiance_file',
                'posterior_errors_file', 'estimated_state_file',
                'path_radiance_file', 'atmospheric_coefficients_file',
                'plot_directory_file', 'radiometry_correction_file',
                'measured_radiance_file'
        ]:
            if not hasattr(self.output, field):
                setattr(self.output, field, None)

        self.ref_wl, self.ref_rfl = None, None

        if 'input' in config:
            self.inputs = Bunch(config['input'])
            for field in ['reference_reflectance_file']:
                if not hasattr(self.inputs, field):
                    setattr(self.inputs, field, None)

            if self.inputs.reference_reflectance_file is not None:
                self.ref_rfl, self.ref_wl = \
                    spectrumLoad(self.inputs.reference_reflectance_file)
示例#4
0
    def __init__(self, config, RT):

        self.wl = RT.wl.copy()
        self.nwl = len(self.wl)
        self.statevec = []
        self.bounds = s.array([])
        self.scale = s.array([])
        self.init_val = s.array([])
        self.bvec = []
        self.bval = s.array([])

        if 'reflectance_file' in config:
            rfl, wl = spectrumLoad(config['reflectance_file'])
            p = interp1d(wl, rfl, bounds_error=False, fill_value='extrapolate')
            self.rfl = p(self.wl)
示例#5
0
文件: isofit.py 项目: lockhart/isofit
def main():

    description = 'Spectroscopic Surface & Atmosphere Fitting'
    parser = argparse.ArgumentParser()
    parser.add_argument('config_file')
    parser.add_argument('--row_column', default='')
    parser.add_argument('--profile', default='')
    args = parser.parse_args()

    # Setup
    config = json.load(open(args.config_file, 'r'))
    configdir, f = split(abspath(args.config_file))
    config = expand_all_paths(config, configdir)

    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    out = Output(config, iv)

    simulation_mode = (not ('input' in config)) or \
        (not ('measured_radiance_file' in config['input']))
    text_mode = simulation_mode or \
        config['input']['measured_radiance_file'].endswith('txt')

    # Do we apply a radiance correction?
    if (not simulation_mode) and \
            'radiometry_correction_file' in config['input']:
        radiance_correction_file = config['input'][
            'radiometry_correction_file']
        radiance_correction, wl = spectrumLoad(radiance_correction_file)
    else:
        radiance_correction = None

    if text_mode:

        # ------------------------------- Text mode

        # build geometry object
        if 'input' in config:
            obs, loc, glt = None, None, None
            if 'glt_file' in config['input']:
                glt = s.loadtxt(config['input']['glt_file'])
            if 'obs_file' in config['input']:
                obs = s.loadtxt(config['input']['obs_file'])
            if 'loc_file' in config['input']:
                loc = s.loadtxt(config['input']['loc_file'])
            geom = Geometry(obs=obs, glt=glt, loc=loc)
        else:
            geom = None

        if simulation_mode:

            # Get our measurement from instrument data or the initial state vector
            state_est = fm.init_val.copy()
            rdn_est = fm.calc_rdn(state_est, geom)
            rdn_meas = rdn_est.copy()
            rdn_sim = fm.instrument.simulate_measurement(rdn_meas, geom)
            rfl_est, rdn_est, path_est, S_hat, K, G =\
                iv.forward_uncertainty(state_est, rdn_meas, geom)

        else:

            # Invert instrument measurement
            rdn_meas, wl = spectrumLoad(
                config['input']['measured_radiance_file'])
            if radiance_correction is not None:
                rdn_meas = rdn_meas * radiance_correction
            rdn_sim = None

            if len(args.profile) > 0:
                cProfile.runctx('iv.invert(rdn_meas, geom, None)', globals(),
                                locals())
                sys.exit(0)

            else:
                state_est = iv.invert(rdn_meas, geom, out=out)
                rfl_est, rdn_est, path_est, S_hat, K, G =\
                    iv.forward_uncertainty(state_est, rdn_meas, geom)

        out.write_spectrum(state_est, rfl_est, rdn_est, path_est, rdn_meas,
                           rdn_sim, geom)

    else:

        # ------------------------------ Binary mode

        meas_file = config['input']['measured_radiance_file']
        meas_hdr = meas_file + '.hdr'
        meas = envi.open(meas_hdr, meas_file)
        nl, nb, ns = [
            int(meas.metadata[n]) for n in ('lines', 'bands', 'samples')
        ]

        # Do we apply a flatfield correction?
        if 'flatfield_correction_file' in config['input']:
            ffile = config['input']['flatfield_correction_file']
            fcor = envi.open(ffile + '.hdr', ffile)
            fcor_mm = fcor.open_memmap(interleave='source', writable=False)
            flatfield = s.array(fcor_mm[0, :, :])
        else:
            flatfield = None

        if 'obs_file' in config['input']:
            obs_file = config['input']['obs_file']
            obs_hdr = obs_file + '.hdr'
            obs = envi.open(obs_hdr, obs_file)
            if int(obs.metadata['bands']) != 11 and \
               int(obs.metadata['bands']) != 10:
                raise ValueError('Expected 10 or 11 bands in OBS file')
            if int(obs.metadata['lines']) != nl or \
               int(obs.metadata['samples']) != ns:
                raise ValueError('obs file dimensions do not match radiance')
        else:
            obs_file, obs_hdr = None, None

        if 'glt_file' in config['input']:
            glt_file = config['input']['glt_file']
            glt_hdr = glt_file + '.hdr'
            glt = envi.open(glt_hdr, glt_file)
            if int(glt.metadata['bands']) != 2:
                raise ValueError('Expected two bands in GLT file')
            if int(glt.metadata['lines']) != nl or \
               int(glt.metadata['samples']) != ns:
                raise ValueError('GLT file dimensions do not match radiance')
        else:
            glt_file, glt_hdr = None, None

        if 'loc_file' in config['input']:
            loc_file = config['input']['loc_file']
            loc_hdr = loc_file + '.hdr'
            loc = envi.open(loc_hdr, loc_file)
            if int(loc.metadata['bands']) != 3:
                raise ValueError('Expected three bands in LOC file')
            if int(loc.metadata['lines']) != nl or \
               int(loc.metadata['samples']) != ns:
                raise ValueError('loc file dimensions do not match radiance')
        else:
            loc_file, loc_hdr = None, None

        rfl_file = config['output']['estimated_reflectance_file']
        rfl_hdr = rfl_file + '.hdr'
        rfl_meta = meas.metadata.copy()
        if not os.path.exists(rfl_hdr):
            rfl = envi.create_image(rfl_hdr, rfl_meta, ext='', force=True)
            del rfl
        rfl = envi.open(rfl_hdr, rfl_file)

        state_file = config['output']['estimated_state_file']
        state_hdr = state_file + '.hdr'
        state_meta = meas.metadata.copy()
        state_meta['bands'] = len(fm.statevec)
        state_meta['band names'] = fm.statevec[:]
        if not os.path.exists(state_hdr):
            state = envi.create_image(state_hdr,
                                      state_meta,
                                      ext='',
                                      force=True)
            del state
        state = envi.open(state_hdr, state_file)

        mdl_file = config['output']['modeled_radiance_file']
        mdl_hdr = mdl_file + '.hdr'
        mdl_meta = meas.metadata.copy()
        if not os.path.exists(mdl_hdr):
            mdl = envi.create_image(mdl_hdr, mdl_meta, ext='', force=True)
            del mdl
        mdl = envi.open(mdl_hdr, mdl_file)

        path_file = config['output']['path_radiance_file']
        path_hdr = path_file + '.hdr'
        path_meta = meas.metadata.copy()
        if not os.path.exists(path_hdr):
            path = envi.create_image(path_hdr, path_meta, ext='', force=True)
            del path
        path = envi.open(path_hdr, path_file)

        post_file = config['output']['posterior_uncertainty_file']
        post_hdr = post_file + '.hdr'
        post_meta = state_meta.copy()
        if not os.path.exists(post_hdr):
            post = envi.create_image(post_hdr, post_meta, ext='', force=True)
            del post
        post = envi.open(post_hdr, post_file)

        if 'component_file' in config['output']:
            comp_file = config['output']['component_file']
            comp_hdr = comp_file + '.hdr'
            comp_meta = state_meta.copy()
            comp_meta['bands'] = 1
            comp_meta['band names'] = '{Surface Model Component}'
            if not os.path.exists(comp_hdr):
                comp = envi.create_image(comp_hdr,
                                         comp_meta,
                                         ext='',
                                         force=True)
                del comp
            comp = envi.open(comp_hdr, comp_file)
        else:
            comp = None

        meas_mm, obs_mm, state_mm, rfl_mm, path_mm, mdl_mm = \
            None, None, None, None, None, None

        # Did the user specify a row,column tuple, or a row?
        if len(args.row_column) < 1:
            lines, samps = range(nl), range(ns)
        else:
            # Restrict the range of the retrieval if overridden.
            ranges = args.row_column.split(',')
            if len(ranges) == 1:
                lines, samps = [int(ranges[0])], range(ns)
            if len(ranges) == 2:
                line_start, line_end = ranges
                lines, samps = range(int(line_start), int(line_end)), range(ns)
            elif len(ranges) == 4:
                line_start, line_end, samp_start, samp_end = ranges
                lines = range(int(line_start), int(line_end))
                samps = range(int(samp_start), int(samp_end))

        # analyze the image one frame at a time
        for i in lines:

            # Flush cache every once in a while
            print('line %i/%i' % (i, nl))
            if meas_mm is None or i % 100 == 0:

                # Refresh Radiance buffer
                del meas
                meas = envi.open(meas_hdr, meas_file)
                meas_mm = meas.open_memmap(interleave='source', writable=False)

                # Refresh OBS buffer
                if obs_hdr is not None:
                    del obs
                    obs = envi.open(obs_hdr, obs_file)
                    obs_mm = obs.open_memmap(interleave='source',
                                             writable=False)

                # Refresh GLT buffer
                if glt_hdr is not None:
                    del glt
                    glt = envi.open(glt_hdr, glt_file)
                    glt_mm = glt.open_memmap(interleave='source',
                                             writable=False)

                # Refresh LOC buffer
                if loc_hdr is not None:
                    del loc
                    loc = envi.open(loc_hdr, loc_file)
                    loc_mm = loc.open_memmap(interleave='source',
                                             writable=False)

                # Refresh Output buffers
                del rfl
                rfl = envi.open(rfl_hdr, rfl_file)
                rfl_mm = rfl.open_memmap(interleave='source', writable=True)

                del state
                state = envi.open(state_hdr, state_file)
                state_mm = state.open_memmap(interleave='source',
                                             writable=True)

                del path
                path = envi.open(path_hdr, path_file)
                path_mm = path.open_memmap(interleave='source', writable=True)

                del mdl
                mdl = envi.open(mdl_hdr, mdl_file)
                mdl_mm = mdl.open_memmap(interleave='source', writable=True)

                del post
                post = envi.open(post_hdr, post_file)
                post_mm = post.open_memmap(interleave='source', writable=True)

                if comp is not None:
                    del comp
                    comp = envi.open(comp_hdr, comp_file)
                    comp_mm = comp.open_memmap(interleave='source',
                                               writable=True)

            # translate to BIP
            meas_frame = s.array(meas_mm[i, :, :]).T

            if obs_hdr is not None:
                obs_frame = s.array(obs_mm[i, :, :])

            if glt_hdr is not None:
                glt_frame = s.array(glt_mm[i, :, :])

            if loc_hdr is not None:
                loc_frame = s.array(loc_mm[i, :, :])

            init = None

            nl = int(rfl_meta['lines'])
            ns = int(rfl_meta['samples'])
            nb = int(rfl_meta['bands'])
            nsv = int(state_meta['bands'])

            if comp is not None:
                comp_frame = s.zeros((1, ns))
            post_frame = s.zeros((nsv, ns), dtype=s.float32)
            rfl_frame = s.zeros((nb, ns), dtype=s.float32)
            state_frame = s.zeros((nsv, ns), dtype=s.float32)
            path_frame = s.zeros((nb, ns), dtype=s.float32)
            mdl_frame = s.zeros((nb, ns), dtype=s.float32)

            for j in samps:
                try:

                    # Use AVIRIS-C convention?
                    if loc_hdr is not None and "t01p00r" in loc_file:
                        loc_frame[:, 2] = loc_frame[:, 2] / \
                            1000.0  # translate to km

                    rdn_meas = meas_frame[j, :]

                    # Bad data test
                    if all(rdn_meas < -49.0):
                        raise OOBError()

                    if obs_hdr is not None:
                        obs_spectrum = obs_frame[j, :]
                    else:
                        obs_spectrum = None

                    if glt_hdr is not None:
                        pc = abs(glt_frame[j, 0]) - 1
                        if pc < 0:
                            raise OOBError()
                        glt_spectrum = glt_frame[j, :]
                    else:
                        pc = j
                        glt_spectrum = None

                    if loc_hdr is not None:
                        loc_spectrum = loc_frame[j, :]
                    else:
                        loc_spectrum = None

                    if flatfield is not None:
                        rdn_meas = rdn_meas * flatfield[:, pc]
                    if radiance_correction is not None:
                        rdn_meas = rdn_meas * radiance_correction
                    geom = Geometry(obs_spectrum,
                                    glt_spectrum,
                                    loc_spectrum,
                                    pushbroom_column=pc)

                    # Inversion
                    if len(args.profile) > 0:
                        cProfile.runctx('iv.invert(rdn_meas, geom, None)',
                                        globals(), locals())
                        sys.exit(0)
                    else:
                        state_est = iv.invert(rdn_meas, geom, None, init=init)
                        rfl_est, rdn_est, path_est, S_hat, K, G =\
                            iv.forward_uncertainty(state_est, rdn_meas, geom)
                        #init = state_est.copy()

                    # write spectrum
                    state_surf = state_est[iv.fm.surface_inds]
                    post_frame[:, j] = s.sqrt(s.diag(S_hat))
                    rfl_frame[:, j] = rfl_est
                    state_frame[:, j] = state_est
                    path_frame[:, j] = path_est
                    mdl_frame[:, j] = rdn_est
                    if comp is not None:
                        comp_frame[:, j] = iv.fm.surface.component(
                            state_surf, geom)

                except OOBError:
                    post_frame[:, j] = -9999 * s.ones((nsv))
                    rfl_frame[:, j] = -9999 * s.ones((nb))
                    state_frame[:, j] = -9999 * s.ones((nsv))
                    path_frame[:, j] = -9999 * s.ones((nb))
                    mdl_frame[:, j] = -9999 * s.ones((nb))
                    if comp is not None:
                        comp_frame[:, j] = -9999

            post_mm[i, :, :] = post_frame.copy()
            rfl_mm[i, :, :] = rfl_frame.copy()
            state_mm[i, :, :] = state_frame.copy()
            path_mm[i, :, :] = path_frame.copy()
            mdl_mm[i, :, :] = mdl_frame.copy()
            if comp is not None:
                comp_mm[i, :, :] = comp_frame.copy()

        del post_mm
        del rfl_mm
        del state_mm
        del path_mm
        del mdl_mm
        if comp is not None:
            del comp_mm