SVM = LogisticRegression(penalty='l2', C=0.1) # SVM = GradientBoostingClassifier(random_state=6) SVM.fit(train_data_x, train_data_y) # test_data_x = train_data_x # test_y_1D = train_data_y y_pred = SVM.predict(test_data_x) #得到输出标签值 accuracy = SVM.score(test_data_x, test_y_1D) #得到分类正确率 y_probability = SVM.predict_proba(test_data_x) #得到分类概率值 y_probability_first = [x[1] for x in y_probability] test_auc = metrics.roc_auc_score(test_y_1D, y_probability_first) kappa = evaluate_method.get_kappa(test_y_1D, y_probability_first) IOA = evaluate_method.get_IOA(test_y_1D, y_probability_first) MCC = evaluate_method.get_mcc(test_y_1D, y_probability_first) recall = evaluate_method.get_recall(test_y_1D, y_probability_first) precision = evaluate_method.get_precision(test_y_1D, y_probability_first) f1 = evaluate_method.get_f1(test_y_1D, y_probability_first) # MAPE = evaluate_method.get_MAPE(test_y_1D,y_probability_first) # evaluate_method.get_ROC(test_y_1D,y_probability_first,save_path='roc_lr_test.txt') print("ACC = " + str(accuracy)) print("AUC = " + str(test_auc)) print(' kappa = ' + str(kappa)) print("IOA = " + str(IOA)) print("MCC = " + str(MCC)) print(' precision = ' + str(precision)) print("recall = " + str(recall)) print("f1 = " + str(f1))
# test_data_x,test_data_y = train_data_x,train_data_y # train_data_x = mean_data(train_data_x) # train_data_x = np.array(train_data_x) model.fit(train_data_x, train_data_y) # test_data_x =train_data_x # test_data_y = train_data_y # y_pred = model.predict(data_input_x) accuracy = model.score(test_data_x, test_data_y) y_probability = model.predict_proba(test_data_x) y_probability_first = [x[1] for x in y_probability] print(y_probability_first) test_auc = metrics.roc_auc_score(test_data_y, y_probability_first) kappa = evaluate_method.get_kappa(test_data_y, y_probability_first) mcc = evaluate_method.get_mcc(test_data_y, y_probability_first) # get_ROC(test_data_y, y_probability_first, 'SVM_roc.txt') print('accuracy = %f' % accuracy) print('AUC = %f' % test_auc) print(kappa) print(mcc) # print (confusion_matrix(data_input_y,y_pred)) # total_data_x = readTotalData(total_data_file='total_data_yushan0.csv',num_factors=16) # # total_data_x = mean_data(total_data_x) # # total_data_x = np.array(total_data_x) # y_probability_total = model.predict_proba(total_data_x) # y_probability_total_first = [x[1] for x in y_probability_total] # with open('result_svm0.txt','w') as file: