def generate(options, coefs=[0, -1, -1, 0.3, 0, 0.3, 0, 0, 0, 0], downsample=True, method='orig', init=None): """ Generating data / function-values on a regular grid of space-time, adding noise and taking a batch of down-sampled regular sub-grids of this grid. This batch will contain the samples to train our network with. :param options: The dictionary of user-specified options (cf. main.py). Contains e.g. the grid-dimensions and noise :return: A batch (as a list) of samples (as dictionaries), that in turn consist of (noisy) function values on down-sampled sub-grids for all dt-layers. """ # Variable declarations nx = options['mesh_size'][0] ny = options['mesh_size'][1] nt = options['layers'] dt = options['dt'] noise_level = options['noise_level'] if downsample is True: downsample_by = options['downsample_by'] batch_size = options['batch_size'] else: downsample_by = 1 batch_size = 1 dx = 2 * np.pi / (nx - 1) dy = 2 * np.pi / (ny - 1) # # Needed for plotting: # x = np.linspace(0, 2*np.pi, num = nx) # y = np.linspace(0, 2*np.pi, num = ny) # X, Y = np.meshgrid(x, y) batch = [] inits = [] for i in range(batch_size): ########################### Change the following lines to implement your own data ########################### sample = {} ## Assign initial function: if init is not None: u = init elif method == 'orig': u = com.initgen(options['mesh_size'], freq=4, boundary='Periodic') elif method == 'rbf': u = com.initgen_custom_rbf(options['mesh_size']) elif method == 'wavelet': u = com.initgen_custom_wavelet(options['mesh_size']) elif method == 'poly': u = com.initgen_custom_order2pol(options['mesh_size']) elif method == 'low_freq': u = com.initgen(options['mesh_size'], freq=2, boundary='Periodic') sample['u0'] = u[(nt - 1) * 2:(nx - (nt - 1) * 2), (nt - 1) * 2:(ny - (nt - 1) * 2)] inits.append(u) # # Plotting the initial function: # fig = plt.figure(figsize=(11,7), dpi=100) # ax = fig.gca(projection='3d') # surf = ax.plot_surface(X, Y, u[:], cmap=cm.viridis) # # plt.show() for n in range(nt - 1): un = u u = (un[2:-2, 2:-2] + dt * (coefs[0] * un[2:-2, 2:-2] + coefs[1] * un[2:-2, 2:-2] * (un[2:-2, 3:-1] - un[2:-2, 2:-2]) / dy + coefs[2] * un[2:-2, 2:-2] * (un[3:-1, 2:-2] - un[2:-2, 2:-2]) / dx + coefs[3] * (un[2:-2, 3:-1] + un[2:-2, 1:-3] - 2 * un[2:-2, 2:-2]) / dy**2 + coefs[4] * (un[3:-1, 3:-1] - un[3:-1, 1:-3] - un[1:-3, 3:-1] + un[1:-3, 1:-3]) / (4 * dx * dy) + coefs[5] * (un[3:-1, 2:-2] + un[1:-3, 2:-2] - 2 * un[2:-2, 2:-2]) / dx**2 + coefs[6] * (2 * un[2:-2, 1:-3] - 2 * un[2:-2, 3:-1] - un[2:-2, :-4] + un[2:-2, 4:]) / (2 * dy**3) + coefs[7] * (-un[3:-1, 4:] + 16 * un[3:-1, 3:-1] - 30 * un[3:-1, 2:-2] + 16 * un[3:-1, 1:-3] - un[3:-1, :-4] + un[1:-3, 4:] - 16 * un[1:-3, 3:-1] + 30 * un[1:-3, 2:-2] - 16 * un[1:-3, 1:-3] + un[1:-3, :-4]) / (24 * dx * dy**2) + coefs[8] * (-un[4:, 3:-1] + 16 * un[3:-1, 3:-1] - 30 * un[2:-2, 3:-1] + 16 * un[1:-3, 3:-1] - un[:-4, 3:-1] + un[4:, 1:-3] - 16 * un[3:-1, 1:-3] + 30 * un[2:-2, 1:-3] - 16 * un[1:-3, 1:-3] + un[:-4, 1:-3]) / (24 * dy * dx**2) + coefs[9] * (2 * un[1:-3, 2:-2] - 2 * un[3:-1, 2:-2] - un[:-4, 2:-2] + un[4:, 2:-2]) / (2 * dx**3))) # The data of all layers should have the same size! sample['u' + str(n + 1)] = u[2 * ((nt - 1) - n - 1):(u.shape[0] - 2 * ((nt - 1) - n - 1)), 2 * ((nt - 1) - n - 1):(u.shape[1] - 2 * ((nt - 1) - n - 1))] ## sample should at this point be a dictionary with entries 'u0', ..., 'uL', where L = nt ## ## For a given j, sample['uj'] is a matrix of size nx x ny containing the function values at time-step dt*j ## ############################################################################################################## # # Plotting the function values from the last layer: # fig2 = plt.figure() # ax2 = fig2.gca(projection='3d') # surf2 = ax2.plot_surface(X[10:260, 10:260], Y[10:260, 10:260], u, cmap=cm.viridis) # # plt.show() com.downsample(sample, downsample_by) com.addNoise(sample, noise_level, nt) batch.append(sample) if batch_size == 1: return batch[0], inits[0] else: return batch, inits
def generate(options): """ Generating data / function-values on a regular grid of space-time, adding noise and taking a batch of down-sampled regular sub-grids of this grid. This batch will contain the samples to train our network with. :param options: The dictionary of user-specified options (cf. main.py). Contains e.g. the grid-dimensions and noise :return: A batch (as a list) of samples (as dictionaries), that in turn consist of (noisy) function values on down-sampled sub-grids for all dt-layers. """ # u_t + u*u_x + u*u_y = nu*(u_{xx} + u_{yy}) # Variable declarations nx = options['mesh_size'][0] ny = options['mesh_size'][1] nt = options['layers'] dt = options['dt'] noise_level = options['noise_level'] downsample_by = options['downsample_by'] batch_size = options['batch_size'] a = 1 b = 0 nu = 10e-2 #0.3 dx = 2 * np.pi / (nx - 1) dy = 2 * np.pi / (ny - 1) # # Needed for plotting: # x = np.linspace(0, 2*np.pi, num = nx) # y = np.linspace(0, 2*np.pi, num = ny) # X, Y = np.meshgrid(x, y) batch = [] for i in range(batch_size): ########################### Change the following lines to implement your own data ########################### ## Assign initial function: u = com.initgen(options['mesh_size'], freq=4, boundary='Periodic') ## Plotting the initial function: # fig = plt.figure(figsize=(11,7), dpi=100) # ax = fig.gca(projection='3d') # surf = ax.plot_surface(X, Y, u[:], cmap=cm.viridis) # # plt.show() sample = {} sample['u0'] = u for n in range(nt - 1): un = com.pad_input_2(u, 2)[1:, 1:] # Same triplet of numbers on each side u = (un[1:-1, 1:-1] - a * (dt / dx * (un[1:-1, 1:-1] * (un[1:-1, 1:-1] - un[2:, 1:-1]))) - b * (dt / dy * (un[1:-1, 1:-1] * (un[1:-1, 1:-1] - un[1:-1, 2:]))) + a * (nu * dt / dx**2 * (un[0:-2, 1:-1] - 2 * un[1:-1, 1:-1] + un[2:, 1:-1])) + b * (nu * dt / dy**2 * (un[1:-1, 0:-2] - 2 * un[1:-1, 1:-1] + un[1:-1, 2:])) )[:-1, :-1] sample['u' + str(n + 1)] = u ## sample should at this point be a dictionary with entries 'u0', ..., 'uL', where L = nt ## ## For a given j, sample['uj'] is a matrix of size nx x ny containing the function values at time-step dt*j ## ############################################################################################################## # # Plotting the function values from the last layer: # fig2 = plt.figure() # ax2 = fig2.gca(projection='3d') # surf2 = ax2.plot_surface(X, Y, u, cmap=cm.viridis) # # plt.show() com.downsample(sample, downsample_by) com.addNoise(sample, noise_level, nt) batch.append(sample) return batch
def generate_new(options, coefs, u, downsample_by): """ Generating data / function-values on a regular grid of space-time, adding noise and taking a batch of down-sampled regular sub-grids of this grid. This batch will contain the samples to train our network with. :param options: The dictionary of user-specified options (cf. main.py). Contains e.g. the grid-dimensions and noise :return: A batch (as a list) of samples (as dictionaries), that in turn consist of (noisy) function values on down-sampled sub-grids for all dt-layers. """ # Variable declarations nx = options['mesh_size'][0] ny = options['mesh_size'][1] nt = options['layers'] dt = options['dt'] noise_level = options['noise_level'] dx = 2*np.pi/(nx - 1) dy = 2*np.pi/(ny - 1) # # Needed for plotting: # x = np.linspace(0, 2*np.pi, num = nx) # y = np.linspace(0, 2*np.pi, num = ny) # X, Y = np.meshgrid(x, y) batch = [] ## Plotting the initial function: # fig = plt.figure(figsize=(11,7), dpi=100) # ax = fig.gca(projection='3d') # surf = ax.plot_surface(X, Y, u[:], cmap=cm.viridis) # # plt.show() sample = {} sample['u0'] = u for n in range(nt - 1): un = com.pad_input_2(u, 2) u = (un[2:-2, 2:-2] + dt * (coefs[5]*(un[3:-1, 2:-2] + un[1:-3, 2:-2] - 2*un[2:-2, 2:-2]) / dx**2 + coefs[3]*(un[2:-2, 3:-1] + un[2:-2, 1:-3] - 2*un[2:-2, 2:-2]) / dy**2 + coefs[2] * un[2:-2, 2:-2] * (un[3:-1, 2:-2] - un[2:-2, 2:-2]) / dx + coefs[1] * un[2:-2, 2:-2] * (un[2:-2, 3:-1] - un[2:-2, 2:-2]) / dy + coefs[0] * un[2:-2, 2:-2] + coefs[4] * (un[3:-1, 3:-1] - un[3:-1, 1:-3] - un[1:-3, 3:-1] + un[1:-3, 1:-3])/(4*dx*dy) + coefs[6] * (2*un[2:-2, 1:-3] - 2*un[2:-2, 3:-1] - un[2:-2, :-4] + un[2:-2, 4:])/(2*dy**3) + coefs[7] * (-un[3:-1, 4:] + 16*un[3:-1, 3:-1] - 30*un[3:-1, 2:-2] + 16*un[3:-1, 1:-3] - un[3:-1, :-4] + un[1:-3, 4:] - 16*un[1:-3, 3:-1] + 30*un[1:-3, 2:-2] - 16*un[1:-3, 1:-3] + un[1:-3, :-4])/(24*dx*dy**2) + coefs[8] * (-un[4:, 3:-1] + 16*un[3:-1, 3:-1] - 30*un[2:-2, 3:-1] + 16*un[1:-3, 3:-1] - un[:-4, 3:-1] + un[4:, 1:-3] - 16*un[3:-1, 1:-3] + 30*un[2:-2, 1:-3] - 16*un[1:-3, 1:-3] + un[:-4, 1:-3])/(24*dy*dx**2) + coefs[9] * (2*un[1:-3, 2:-2] - 2*un[3:-1, 2:-2] - un[:-4, 2:-2] + un[4:, 2:-2])/(2*dx**3))) sample['u' + str(n+1)] = u # # Plotting the function values from the last layer: # fig2 = plt.figure() # ax2 = fig2.gca(projection='3d') # surf2 = ax2.plot_surface(X, Y, u, cmap=cm.viridis) # plt.figure() # plt.pcolor(X, Y, u, cmap='jet') # plt.colorbar() # plt.xlabel('x') # plt.ylabel('y') # plt.show() com.downsample(sample, downsample_by) com.addNoise(sample, noise_level, nt) return sample