示例#1
0
def define_device_to_rename(portshow_aggregated_df, device_rename_df,
                            max_title, force_form_update_flag,
                            force_change_data_lst, report_data_lst):
    """
    Function to define (create new, return previously saved or return empty) 
    device_rename_df DataFrame to apply device rename schema
    """

    # if device_rename_df DataFrame doesn't exist (1st iteration)
    # or force flag to change device_rename_df DataFrame is on
    # or some related DataFrames was forcibly changed
    if device_rename_df is None or force_form_update_flag:
        print('\n')
        if force_change_data_lst:
            print(
                f"Request to force change of {', '.join(force_change_data_lst)} data was received."
            )
        reply = reply_request(
            'Do you want to change auto assigned device names? (y)es/(n)o: ')
        if reply == 'y':
            # if device_rename_df DataFrame doesn't exist (1st iteration)
            if device_rename_df is None:
                # create new device rename DataFrame
                manual_device_rename_df = create_device_rename_form(
                    portshow_aggregated_df)
            else:
                # if any related DataFrames was forcibly changed ask if device rename form reset required
                if force_change_data_lst:
                    reply = reply_request(
                        'Do you want to apply previously saved device rename schema? (y)es/(n)o: '
                    )
                    if reply == 'y':
                        print('\n')
                        return device_rename_df
                    else:
                        print('\n')
                        reply = reply_request(
                            'Do you want to reset device rename form? (y)es/(n)o: '
                        )
                        if reply == 'y':
                            # create new device rename DataFrame
                            manual_device_rename_df = create_device_rename_form(
                                portshow_aggregated_df)
                        else:
                            # use saved device rename DataFrame
                            manual_device_rename_df = device_rename_df.copy()
                else:
                    # if no force change in related DataFrames but device_rename_df DataFrame
                    # change initiated use saved device rename DataFrame
                    manual_device_rename_df = device_rename_df.copy()

            # save manual_device_rename_df DataFrame to excel file to use at as form to fill
            sheet_title = 'device_rename_form'
            file_path = save_xlsx_file(manual_device_rename_df,
                                       sheet_title,
                                       report_data_lst,
                                       force_flag=True)
            file_name = os.path.basename(file_path)
            file_directory = os.path.dirname(file_path)
            print(
                f"\nTo rename devices put new names into the '{file_name}' file, '{sheet_title}' sheet in\n'{file_directory}' directory"
            )
            print('ATTN! CLOSE file after changes were made\n')
            # complete the manual_device_rename_df form and import it
            reply = reply_request("When finish enter 'yes': ", ['yes'])
            if reply == 'y':
                print('\n')
                device_rename_df = dataframe_import(sheet_title,
                                                    max_title,
                                                    init_file=file_path,
                                                    header=2)

        else:
            # if don't change auto assigned names save empty device_rename_df DataFrame
            device_rename_columns = [
                'Fabric_name', 'Device_Host_Name', 'Group_Name', 'deviceType',
                'deviceSubtype', 'Device_Host_Name_rename'
            ]
            device_rename_df = pd.DataFrame(columns=device_rename_columns)
    else:
        # check loaded device_rename_df DataFrame (if it's empty)
        device_rename_df = verify_data(report_data_lst, ['device_rename'],
                                       device_rename_df,
                                       show_status=False)

    return device_rename_df
示例#2
0
def switch_params_analysis_main(fabricshow_ag_labels_df, chassis_params_df,
                                switch_params_df, maps_params_df,
                                blade_module_loc_df, ag_principal_df,
                                report_data_lst):
    """Main function to create aggregated switch parameters table and report tables"""

    # report_data_lst contains information:
    # customer_name, dir_report, dir to save obtained data, max_title, report_steps_dct
    *_, max_title, report_steps_dct = report_data_lst

    # names to save data obtained after current module execution
    data_names = [
        'report_columns_usage', 'switch_params_aggregated', 'Коммутаторы',
        'Фабрика', 'Параметры_коммутаторов', 'Лицензии',
        'Глобальные_параметры_фабрики'
    ]
    # service step information
    print(f'\n\n{report_steps_dct[data_names[0]][3]}\n')

    # load data if they were saved on previos program execution iteration
    data_lst = load_data(report_data_lst, *data_names)
    # unpacking DataFrames from the loaded list with data
    # pylint: disable=unbalanced-tuple-unpacking
    report_columns_usage_dct, switch_params_aggregated_df, switches_report_df, fabric_report_df, \
        switches_parameters_report_df, licenses_report_df, global_fabric_parameters_report_df  = data_lst

    # list of data to analyze from report_info table
    analyzed_data_names = [
        'chassis_parameters', 'switch_parameters', 'switchshow_ports',
        'maps_parameters', 'blade_interconnect', 'fabric_labels'
    ]

    # clean fabricshow DataFrame from unneccessary data
    fabric_clean_df = fabric_clean(fabricshow_ag_labels_df)
    # force run when any data from data_lst was not saved (file not found) or
    # procedure execution explicitly requested for output data or data used during fn execution
    force_run = verify_force_run(data_names, data_lst, report_steps_dct,
                                 max_title, analyzed_data_names)
    if force_run:

        # import data with switch models, firmware and etc
        switch_models_df = dataframe_import('switch_models', max_title)

        # current operation information string
        info = f'Generating aggregated switch parameters table'
        print(info, end=" ")

        # create aggregated table by joining DataFrames
        switch_params_aggregated_df, report_columns_usage_dct = \
            fabric_aggregation(fabric_clean_df, chassis_params_df, \
                switch_params_df, maps_params_df, switch_models_df, ag_principal_df)
        # add 'Device_Location for Blade chassis switches
        switch_params_aggregated_df = fill_device_location(
            switch_params_aggregated_df, blade_module_loc_df)

        # after finish display status
        status_info('ok', max_title, len(info))

        # check if switch config files missing
        mask_fabric = switch_params_aggregated_df[[
            'Fabric_name', 'Fabric_label'
        ]].notna().all(axis=1)
        mask_no_config = switch_params_aggregated_df['chassis_name'].isna()
        missing_configs_num = switch_params_aggregated_df.loc[mask_no_config][
            'Fabric_name'].count()
        if missing_configs_num:
            info = f'{missing_configs_num} switch configuration{"s" if missing_configs_num > 1 else ""} MISSING'
            print(info, end=" ")
            status_info('warning', max_title, len(info))

        switches_report_df, fabric_report_df, switches_parameters_report_df, \
            licenses_report_df, global_fabric_parameters_report_df = \
                switchs_params_report(switch_params_aggregated_df, data_names, report_columns_usage_dct, max_title)

        # # partition aggregated DataFrame to required tables
        # switches_report_df, fabric_report_df,  \
        #     switches_parameters_report_df, licenses_report_df = \
        #         dataframe_segmentation(switch_params_aggregated_df, data_names[2:-1], \
        #             report_columns_usage_dct, max_title)

        # # global parameters are equal for all switches in one fabric thus checking Principal switches only
        # mask_principal = switch_params_aggregated_df['switchRole'] == 'Principal'
        # switch_params_principal_df = switch_params_aggregated_df.loc[mask_principal].copy()
        # global_fabric_parameters_report_df, = dataframe_segmentation(switch_params_principal_df, data_names[-1], \
        #             report_columns_usage_dct, max_title)

        # # drop rows with empty switch names columns
        # fabric_report_df.dropna(subset = ['Имя коммутатора'], inplace = True)
        # switches_parameters_report_df.dropna(subset = ['Имя коммутатора'], inplace = True)
        # licenses_report_df.dropna(subset = ['Имя коммутатора'], inplace = True)

        # # drop fabric_id if all have same value
        # if fabric_report_df['Fabric ID'].dropna().nunique() == 1:
        #     fabric_report_df.drop(columns=['Fabric ID'], inplace=True)

        # # TO_REMOVE No need to drop duplicates coz Principal switches only used before
        # # # parameters are equal for all switches in one fabric
        # # if report_columns_usage_dct['fabric_name_usage']:
        # #     global_fabric_parameters_report_df.drop_duplicates(subset=['Фабрика', 'Подсеть'], inplace=True)
        # # else:
        # #     global_fabric_parameters_report_df.drop_duplicates(subset=['Подсеть'], inplace=True)

        # global_fabric_parameters_report_df.reset_index(inplace=True, drop=True)

        # create list with partitioned DataFrames
        data_lst = [
            report_columns_usage_dct, switch_params_aggregated_df,
            switches_report_df, fabric_report_df,
            switches_parameters_report_df, licenses_report_df,
            global_fabric_parameters_report_df
        ]

        # saving data to json or csv file
        save_data(report_data_lst, data_names, *data_lst)
    # verify if loaded data is empty and replace information string with empty DataFrame
    else:
        report_columns_usage_dct, switch_params_aggregated_df, switches_report_df, fabric_report_df,  \
            switches_parameters_report_df, licenses_report_df, global_fabric_parameters_report_df = verify_data(report_data_lst, data_names, *data_lst)
        data_lst = [
            report_columns_usage_dct, switch_params_aggregated_df,
            switches_report_df, fabric_report_df,
            switches_parameters_report_df, licenses_report_df,
            global_fabric_parameters_report_df
        ]
    # save data to service file if it's required
    for data_name, data_frame in zip(data_names[1:], data_lst[1:]):
        save_xlsx_file(data_frame, data_name, report_data_lst)

    return report_columns_usage_dct, switch_params_aggregated_df, fabric_clean_df
示例#3
0
def portcmd_analysis_main(portshow_df, switchshow_ports_df, switch_params_df,
                          switch_params_aggregated_df, isl_aggregated_df,
                          nsshow_df, nscamshow_df, ag_principal_df,
                          porttrunkarea_df, alias_df, fdmi_df, blade_module_df,
                          blade_servers_df, blade_vc_df, synergy_module_df,
                          synergy_servers_df, system_3par_df, port_3par_df,
                          report_columns_usage_dct, report_data_lst):
    """Main function to add connected devices information to portshow DataFrame"""

    # report_data_lst contains information:
    # customer_name, dir_report, dir to save obtained data, max_title, report_steps_dct
    *_, max_title, report_steps_dct = report_data_lst

    # names to save data obtained after current module execution
    data_names = [
        'portshow_aggregated', 'storage_connection_statistics',
        'device_connection_statistics', 'device_rename',
        'report_columns_usage_upd', 'Серверы', 'Массивы', 'Библиотеки',
        'Микрокоды_HBA', 'Подключение_массивов', 'Подключение_библиотек',
        'Подключение_серверов', 'NPIV', 'Статистика_массивов',
        'Статистика_устройств'
    ]
    # service step information
    print(f'\n\n{report_steps_dct[data_names[0]][3]}\n')

    report_columns_usage_bckp = report_columns_usage_dct

    # load data if they were saved on previos program execution iteration
    data_lst = load_data(report_data_lst, *data_names)
    # flag to forcible save portshow_aggregated_df if required
    portshow_force_flag = False
    # unpacking DataFrames from the loaded list with data
    # pylint: disable=unbalanced-tuple-unpacking
    portshow_aggregated_df, storage_connection_statistics_df, device_connection_statistics_df, \
        device_rename_df, report_columns_usage_dct, \
            servers_report_df, storage_report_df, library_report_df, hba_report_df, \
                storage_connection_df,  library_connection_df, server_connection_df, npiv_report_df, \
                    storage_connection_statistics_report_df, device_connection_statistics_report_df = data_lst
    nsshow_unsplit_df = pd.DataFrame()

    if not report_columns_usage_dct:
        report_columns_usage_dct = report_columns_usage_bckp

    # list of data to analyze from report_info table
    analyzed_data_names = [
        'portcmd', 'switchshow_ports', 'switch_params_aggregated',
        'switch_parameters', 'chassis_parameters', 'fdmi', 'nscamshow',
        'nsshow', 'alias', 'blade_servers', 'fabric_labels', 'isl', 'trunk',
        'isl_aggregated', 'Параметры_SFP', 'portshow_sfp_aggregated'
    ]

    # force run when any data from data_lst was not saved (file not found) or
    # procedure execution explicitly requested for output data or data used during fn execution
    force_run = verify_force_run(data_names, data_lst, report_steps_dct,
                                 max_title, analyzed_data_names)
    if force_run:
        # import data with switch models, firmware and etc
        switch_models_df = dataframe_import('switch_models', max_title)
        # data imported from init file (regular expression patterns) to extract values from data columns
        # re_pattern list contains comp_keys, match_keys, comp_dct
        _, _, *re_pattern_lst = data_extract_objects('nameserver', max_title)

        oui_df = dataframe_import('oui',
                                  max_title,
                                  columns=['Connected_oui', 'type', 'subtype'])

        # current operation information string
        info = f'Generating connected devices table'
        print(info, end=" ")


        portshow_aggregated_df, alias_wwnn_wwnp_df, nsshow_unsplit_df, expected_ag_links_df = \
            portshow_aggregated(portshow_df, switchshow_ports_df, switch_params_df,
                                switch_params_aggregated_df, isl_aggregated_df, nsshow_df,
                                nscamshow_df, ag_principal_df, porttrunkarea_df, switch_models_df, alias_df,
                                oui_df, fdmi_df, blade_module_df,  blade_servers_df, blade_vc_df,
                                synergy_module_df, synergy_servers_df, system_3par_df, port_3par_df,
                                re_pattern_lst, report_data_lst)

        # after finish display status
        status_info('ok', max_title, len(info))
        # show warning if any UNKNOWN device class founded, if any PortSymb or NodeSymb is not parsed,
        # if new switch founded
        portshow_force_flag, nsshow_unsplit_force_flag, expected_ag_links_force_flag = \
            warning_notification(portshow_aggregated_df, switch_params_aggregated_df,
            nsshow_unsplit_df, expected_ag_links_df, report_data_lst)
        # correct device names manually
        portshow_aggregated_df, device_rename_df = \
            devicename_correction_main(portshow_aggregated_df, device_rename_df,
                                        report_columns_usage_dct, report_data_lst)
        # count Device_Host_Name instances for fabric_label, label and total in fabric
        portshow_aggregated_df = device_ports_per_group(portshow_aggregated_df)

        # count device connection statistics
        info = f'Counting device connection statistics'
        print(info, end=" ")
        storage_connection_statistics_df = storage_connection_statistics(
            portshow_aggregated_df, re_pattern_lst)
        device_connection_statistics_df = device_connection_statistics(
            portshow_aggregated_df)
        status_info('ok', max_title, len(info))

        servers_report_df, storage_report_df, library_report_df, hba_report_df, \
            storage_connection_df,  library_connection_df, server_connection_df, npiv_report_df, \
                storage_connection_statistics_report_df, device_connection_statistics_report_df  = \
                    create_report_tables(portshow_aggregated_df, storage_connection_statistics_df,
                                            device_connection_statistics_df, data_names[5:-2],
                                            report_columns_usage_dct, max_title)
        # create list with partitioned DataFrames
        data_lst = [
            portshow_aggregated_df, storage_connection_statistics_df,
            device_connection_statistics_df, device_rename_df,
            report_columns_usage_dct, servers_report_df, storage_report_df,
            library_report_df, hba_report_df, storage_connection_df,
            library_connection_df, server_connection_df, npiv_report_df,
            storage_connection_statistics_report_df,
            device_connection_statistics_report_df
        ]

        # saving data to json or csv file
        save_data(report_data_lst, data_names, *data_lst)
        save_xlsx_file(nsshow_unsplit_df,
                       'nsshow_unsplit',
                       report_data_lst,
                       force_flag=nsshow_unsplit_force_flag)
        save_xlsx_file(expected_ag_links_df,
                       'expected_ag_links',
                       report_data_lst,
                       force_flag=expected_ag_links_force_flag)
    # verify if loaded data is empty and replace information string with empty DataFrame
    else:
        portshow_aggregated_df, storage_connection_statistics_df, device_connection_statistics_df, \
            device_rename_df, report_columns_usage_dct, \
                servers_report_df, storage_report_df, library_report_df, hba_report_df, \
                    storage_connection_df, library_connection_df, server_connection_df, npiv_report_df, \
                        storage_connection_statistics_report_df, device_connection_statistics_report_df \
                            = verify_data(report_data_lst, data_names, *data_lst)
        data_lst = [
            portshow_aggregated_df, storage_connection_statistics_df,
            device_connection_statistics_df, device_rename_df,
            report_columns_usage_dct, servers_report_df, storage_report_df,
            library_report_df, hba_report_df, storage_connection_df,
            library_connection_df, server_connection_df, npiv_report_df,
            storage_connection_statistics_report_df,
            device_connection_statistics_report_df
        ]
    # save data to service file if it's required
    for data_name, data_frame in zip(data_names, data_lst):
        force_flag = False
        if data_name == 'portshow_aggregated':
            force_flag = portshow_force_flag
        save_xlsx_file(data_frame,
                       data_name,
                       report_data_lst,
                       force_flag=force_flag)
    return portshow_aggregated_df
示例#4
0
def err_sfp_cfg_analysis_main(portshow_aggregated_df, sfpshow_df,
                              portcfgshow_df, report_columns_usage_dct,
                              report_data_lst):
    """Main function to add porterr, transceiver and portcfg information to portshow DataFrame"""

    # report_data_lst contains information:
    # customer_name, dir_report, dir to save obtained data, max_title, report_steps_dct
    *_, max_title, report_steps_dct = report_data_lst
    portshow_sfp_force_flag = False
    portshow_sfp_export_flag, *_ = report_steps_dct['portshow_sfp_aggregated']

    # names to save data obtained after current module execution
    data_names = [
        'portshow_sfp_aggregated', 'Ошибки', 'Параметры_SFP',
        'Параметры_портов'
    ]
    # service step information
    print(f'\n\n{report_steps_dct[data_names[0]][3]}\n')

    # load data if they were saved on previos program execution iteration
    data_lst = load_data(report_data_lst, *data_names)
    # unpacking DataFrames from the loaded list with data
    # pylint: disable=unbalanced-tuple-unpacking
    portshow_sfp_aggregated_df, error_report_df, sfp_report_df, portcfg_report_df = data_lst

    # list of data to analyze from report_info table
    analyzed_data_names = [
        'portshow_aggregated', 'sfpshow', 'portcfgshow', 'portcmd',
        'switchshow_ports', 'switch_params_aggregated', 'fdmi',
        'device_rename', 'report_columns_usage_upd', 'nscamshow', 'nsshow',
        'alias', 'blade_servers', 'fabric_labels'
    ]

    # force run when any data from data_lst was not saved (file not found) or
    # procedure execution explicitly requested for output data or data used during fn execution
    force_run = verify_force_run(data_names, data_lst, report_steps_dct,
                                 max_title, analyzed_data_names)

    if force_run:
        # import transeivers information from file
        sfp_model_df = dataframe_import('sfp_models', max_title)
        # current operation information string
        info = f'Updating connected devices table'
        print(info, end=" ")
        # add sfpshow, transceiver information and portcfg to aggregated portcmd DataFrame
        portshow_sfp_aggregated_df = port_complete(portshow_aggregated_df,
                                                   sfpshow_df, sfp_model_df,
                                                   portcfgshow_df)
        # after finish display status
        status_info('ok', max_title, len(info))

        # warning if UKNOWN SFP present
        if (portshow_sfp_aggregated_df['Transceiver_Supported'] ==
                'Unknown SFP').any():
            info_columns = [
                'Fabric_name', 'Fabric_label', 'configname', 'chassis_name',
                'chassis_wwn', 'slot', 'port', 'Transceiver_Supported'
            ]
            portshow_sfp_info_df = portshow_sfp_aggregated_df.drop_duplicates(
                subset=info_columns).copy()
            unknown_count = len(portshow_sfp_info_df[
                portshow_sfp_info_df['Transceiver_Supported'] ==
                'Unknown SFP'])
            info = f'{unknown_count} {"port" if unknown_count == 1 else "ports"} with UNKNOWN supported SFP tag found'
            print(info, end=" ")
            status_info('warning', max_title, len(info))
            # ask if save portshow_aggregated_df
            if not portshow_sfp_export_flag:
                reply = reply_request(
                    "Do you want to save 'portshow_sfp_aggregated'? (y)es/(n)o: "
                )
                if reply == 'y':
                    portshow_sfp_force_flag = True

        # create reaport tables from port_complete_df DataFrtame
        error_report_df, sfp_report_df, portcfg_report_df = \
            create_report_tables(portshow_sfp_aggregated_df, data_names[1:], report_columns_usage_dct, max_title)
        # saving data to json or csv file
        data_lst = [
            portshow_sfp_aggregated_df, error_report_df, sfp_report_df,
            portcfg_report_df
        ]
        save_data(report_data_lst, data_names, *data_lst)
    # verify if loaded data is empty and reset DataFrame if yes
    else:
        portshow_sfp_aggregated_df, error_report_df, sfp_report_df, portcfg_report_df \
            = verify_data(report_data_lst, data_names, *data_lst)
        data_lst = [
            portshow_sfp_aggregated_df, error_report_df, sfp_report_df,
            portcfg_report_df
        ]
    # save data to excel file if it's required
    for data_name, data_frame in zip(data_names, data_lst):
        force_flag = False
        if data_name == 'portshow_sfp_aggregated':
            force_flag = portshow_sfp_force_flag
        save_xlsx_file(data_frame,
                       data_name,
                       report_data_lst,
                       force_flag=force_flag)

    return portshow_sfp_aggregated_df
示例#5
0
def fabric_main(fabricshow_ag_labels_df, chassis_params_df, \
    switch_params_df, maps_params_df, report_data_lst):
    """Main function to create tables"""

    # report_data_lst contains information:
    # customer_name, dir_report, dir to save obtained data, max_title, report_steps_dct
    *_, max_title, report_steps_dct = report_data_lst

    # names to save data obtained after current module execution
    data_names = [
        'Коммутаторы', 'Фабрика', 'Глобальные_параметры_фабрики',
        'Параметры_коммутаторов', 'Лицензии'
    ]
    # service step information
    print(f'\n\n{report_steps_dct[data_names[0]][3]}\n')

    # load data if they were saved on previos program execution iteration
    data_lst = load_data(report_data_lst, *data_names)
    # unpacking DataFrames from the loaded list with data
    # pylint: disable=unbalanced-tuple-unpacking
    switches_report_df, fabric_report_df, global_fabric_parameters_report_df, \
        switches_parameters_report_df, licenses_report_df = data_lst

    # data force extract check
    # list of keys for each data from data_lst representing if it is required
    # to re-collect or re-analyze data even they were obtained on previous iterations
    force_extract_keys_lst = [
        report_steps_dct[data_name][1] for data_name in data_names
    ]
    # list with True (if data loaded) and/or False (if data was not found and None returned)
    data_check = force_extract_check(data_names, data_lst,
                                     force_extract_keys_lst, max_title)

    # flag if fabrics labels was forced to be changed
    fabric_labels_change = True if report_steps_dct['fabric_labels'][
        1] else False
    # initialization chassis information and farbric name columns usage
    report_columns_usage_dct = {
        'fabric_name_usage': True,
        'chassis_info_usage': True
    }
    # import data with switch models, firmware and etc
    switch_models_df = dataframe_import('switch_models', max_title)
    # clean fabricshow DataFrame from unneccessary data
    fabric_clean_df = fabric_clean(fabricshow_ag_labels_df)
    # create aggregated table by joining DataFrames
    switch_params_aggregated_df, report_columns_usage_dct = \
        fabric_aggregation(fabric_clean_df, chassis_params_df, \
            switch_params_df, maps_params_df, switch_models_df)
    save_xlsx_file(switch_params_aggregated_df, 'switch_params_aggregated', \
        report_data_lst, report_type = 'analysis')

    # when no data saved or force extract flag is on or fabric labels have been changed than
    # analyze extracted config data
    if not all(data_check) or any(
            force_extract_keys_lst) or fabric_labels_change:
        # information string if fabric labels force changed was initiated
        # and statistics recounting required
        if fabric_labels_change and not any(force_extract_keys_lst) and all(
                data_check):
            info = f'Switch information force extract due to change in Fabrics labeling'
            print(info, end=" ")
            status_info('ok', max_title, len(info))

        # partition aggregated DataFrame to required tables
        switches_report_df, fabric_report_df, global_fabric_parameters_report_df, \
            switches_parameters_report_df, licenses_report_df = \
                dataframe_segmentation(switch_params_aggregated_df, data_names, \
                    report_columns_usage_dct, max_title)

        # drop rows with empty switch names columns
        fabric_report_df.dropna(subset=['Имя коммутатора'], inplace=True)
        switches_parameters_report_df.dropna(subset=['Имя коммутатора'],
                                             inplace=True)
        licenses_report_df.dropna(subset=['Имя коммутатора'], inplace=True)

        # parameters are equal for all switches in one fabric
        if report_columns_usage_dct['fabric_name_usage']:
            global_fabric_parameters_report_df.drop_duplicates(
                subset=['Фабрика', 'Подсеть'], inplace=True)
        else:
            global_fabric_parameters_report_df.drop_duplicates(
                subset=['Подсеть'], inplace=True)
        global_fabric_parameters_report_df.reset_index(inplace=True, drop=True)

        # create list with partitioned DataFrames
        data_lst = [switches_report_df, fabric_report_df, global_fabric_parameters_report_df, \
            switches_parameters_report_df, licenses_report_df]

        # current operation information string
        info = f'Generating Fabric and Switches tables'
        print(info, end=" ")
        # after finish display status
        status_info('ok', max_title, len(info))

        # saving DataFrames to csv file
        save_data(report_data_lst, data_names, *data_lst)
        # save_data(report_data_lst, data_auxillary_names, *data_auxillary_lst)

    # save data to service file if it's required
    for data_name, data_frame in zip(data_names, data_lst):
        save_xlsx_file(data_frame, data_name, report_data_lst)

    return switch_params_aggregated_df, report_columns_usage_dct, fabric_clean_df