def test_float_quant_compare(self): torch.manual_seed(42) myModel = ModelMultipleOps().to(torch.float32) myModel.eval() calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) out_ref = myModel(eval_data) qModel = torch.quantization.QuantWrapper(myModel) qModel.eval() qModel.qconfig = torch.quantization.default_qconfig torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']]) torch.quantization.prepare(qModel, inplace=True) qModel(calib_data) torch.quantization.convert(qModel, inplace=True) out_q = qModel(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired # output self.assertGreater( SQNRdB, 30, msg= 'Quantized model numerics diverge from float, expect SQNR > 30 dB')
def test_float_quant_compare_per_tensor(self): for qengine in ["fbgemm", "qnnpack"]: if qengine not in torch.backends.quantized.supported_engines: continue if qengine == 'qnnpack': if IS_PPC or TEST_WITH_UBSAN: continue with override_quantized_engine(qengine): torch.manual_seed(42) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) qModel = torch.quantization.QuantWrapper(my_model) qModel.eval() qModel.qconfig = torch.quantization.default_qconfig torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare(qModel, inplace=True) qModel(calib_data) torch.quantization.convert(qModel, inplace=True) out_q = qModel(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired # output self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB')
def test_float_quant_compare_per_channel(self): # Test for per-channel Quant torch.manual_seed(67) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) q_model = torch.quantization.QuantWrapper(my_model) q_model.eval() q_model.qconfig = torch.quantization.default_per_channel_qconfig torch.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare(q_model) q_model(calib_data) torch.quantization.convert(q_model) out_q = q_model(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 35 dB self.assertGreater( SQNRdB, 35, msg= 'Quantized model numerics diverge from float, expect SQNR > 35 dB')