示例#1
0
def execute(matrix, para):
    # loop over each sampling rate and each round
    if para["parallelMode"]:  # run on multiple processes
        pool = multiprocessing.Pool()
        for rate in para["samplingRate"]:
            pool.apply_async(monitoring, (matrix, rate, para))
        pool.close()
        pool.join()
    else:  # run on single processes
        for rate in para["samplingRate"]:
            monitoring(matrix, rate, para)
    # summarize the dumped results
    evallib.summarizeResult(para)
示例#2
0
def execute(matrix, para):
    # loop over each density and each round
    if para['parallelMode']: # run on multiple processes
        pool = multiprocessing.Pool()
        for den in para['density']: 
            for roundId in xrange(para['rounds']):
                pool.apply_async(executeOneSetting, (matrix, den, roundId, para))
        pool.close()
        pool.join()
    else: # run on single processes
        for den in para['density']:
            for roundId in xrange(para['rounds']):
                executeOneSetting(matrix, den, roundId, para)
    # summarize the dumped results
    evallib.summarizeResult(para)
def execute(matrix, para):
    # loop over each density and each round
    if para['parallelMode']: # run on multiple processes
        pool = multiprocessing.Pool()
        for den in para['density']: 
            for roundId in xrange(para['rounds']):
                pool.apply_async(executeOneSetting, (matrix, den, roundId, para))
        pool.close()
        pool.join()
    else: # run on single processes
        for den in para['density']:
            for roundId in xrange(para['rounds']):
                executeOneSetting(matrix, den, roundId, para)
    # summarize the dumped results
    evallib.summarizeResult(para)
示例#4
0
def execute(matrix, para):
    # loop over each sampling rate and each round
    if para['parallelMode']: # run on multiple processes
        pool = multiprocessing.Pool()
        for rate in para['samplingRate']: 
            for roundId in xrange(para['rounds']):
                pool.apply_async(monitoring, (matrix, rate, roundId, para))
        pool.close()
        pool.join()
    else: # run on single processes
        for rate in para['samplingRate']:
            for roundId in xrange(para['rounds']):
                monitoring(matrix, rate, roundId, para)
    # process the dumped results
    evallib.summarizeResult(para)