sat_archive="/gss/gss_work/DRES_OGS_BiGe/Observations/TIME_RAW_DATA/ONLINE/SAT/MODIS/DAILY/CHECKED/" DAILY_SAT_LIST=TS.get_daily_sat(forecasts_sublist,sat_archive) # float aggregator already done by others day=0 surf_layer=Layer(0,10) for time,archived_file,satfile in DAILY_SAT_LIST: avefile=INPUTDIR + os.path.basename(archived_file)[:-3] day=day+1 outfile=OUTDIR + "misfit+%dh.nc" % (day*24) print avefile continue Sat16 = Sat.convertinV4format( Sat.readfromfile(satfile) ) De = DataExtractor(TheMask,filename=avefile, varname='P_i') Model = MapBuilder.get_layer_average(De, surf_layer) Misfit = Sat16-Model cloudsLand = (np.isnan(Sat16)) #| (Sat16 > 1.e19) | (Sat16<0) modelLand = np.isnan(Model) #lands are nan nodata = cloudsLand | modelLand selection = ~nodata # & TheMask.mask_at_level(200.0) Misfit[nodata] = np.NaN netcdf3.write_2d_file(Misfit, 'chl_misfit', outfile, TheMask)
filelist=[] for k in indexes: t = TL.Timelist[k] filename = INPUTDIR + "ave." + t.strftime("%Y%m%d-%H:%M:%S") + "." + var + ".nc" filelist.append(filename) # ---------------------------------------------------------- M3d = TimeAverager3D(filelist, weights, var, TheMask) for layer in LAYERLIST: print layer De = DataExtractor(TheMask,rawdata=M3d) integrated = MapBuilder.get_layer_average(De, layer) clim = [M3d[TheMask.mask].min(), M3d[TheMask.mask].max()] fig,ax = mapplot({'varname':var, 'clim':clim, 'layer':layer, 'data':integrated, 'date':req.string},fig=None,ax=None,mask=TheMask) outfile = OUTPUTDIR + prefix + '.' + var + "." + layer.longname() + ".nc" netcdf3.write_2d_file(integrated,var,outfile,TheMask) outfile = OUTPUTDIR + var + "." + prefix + "." + layer.longname() + ".png" fig.savefig(outfile) pl.close(fig) # Now, the whole year import commons.timerequestors as requestors MY_YEAR = TimeInterval('20140401','20150401',"%Y%m%d") req = requestors.Generic_req(MY_YEAR) indexes,weights = TL.select(req)