示例#1
0
  def forward(self, x, x_lengths, speaker_embedding, g=None):
    x = self.emb(x) * math.sqrt(self.hidden_channels)  # [b, t, h]
    x = torch.transpose(x, 1, -1)  # [b, h, t]
    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

    # Append speaker embeddings
    speaker_embedding = speaker_embedding.unsqueeze(2)
    speaker_embedding = speaker_embedding.repeat(1, 1, x.shape[2])
    x = torch.cat((x, speaker_embedding), dim=1)

    if self.prenet:
      x = self.pre(x, x_mask)

    x = self.encoder(x, x_mask)

    if g is not None:
      g_exp = g.expand(-1, -1, x.size(-1))
      x_dp = torch.cat([torch.detach(x), g_exp], 1)
    else:
      x_dp = torch.detach(x)

    x_m = self.proj_m(x) * x_mask
    if not self.mean_only:
      x_logs = self.proj_s(x) * x_mask
    else:
      x_logs = torch.zeros_like(x_m)

    logw = self.proj_w(x_dp, x_mask)

    return x_m, x_logs, logw, x_mask
示例#2
0
  def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
    x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
    if self.n_speakers > 0:
      g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
    else:
      g = None

    if self.use_sdp:
      logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
    else:
      logw = self.dp(x, x_mask, g=g)
    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
    z = self.flow(z_p, y_mask, g=g, reverse=True)
    o = self.dec((z * y_mask)[:,:,:max_len], g=g)
    return o, attn, y_mask, (z, z_p, m_p, logs_p)
示例#3
0
 def forward(self, x, x_lengths, g=None):
   x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
   x = self.pre(x) * x_mask
   x = self.enc(x, x_mask, g=g)
   stats = self.proj(x) * x_mask
   m, logs = torch.split(stats, self.out_channels, dim=1)
   z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
   return z, m, logs, x_mask
示例#4
0
  def forward(self, x, x_lengths):
    x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
    x = torch.transpose(x, 1, -1) # [b, h, t]
    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

    x = self.encoder(x * x_mask, x_mask)
    stats = self.proj(x) * x_mask

    m, logs = torch.split(stats, self.out_channels, dim=1)
    return x, m, logs, x_mask
示例#5
0
  def forward(self, x, x_lengths, speaker_embedding, y=None, y_lengths=None, g=None, gen=False, noise_scale=1.,
              length_scale=1.):

    if g is not None:
      g = F.normalize(self.emb_g(g)).unsqueeze(-1)  # [b, h]
    x_m, x_logs, logw, x_mask = self.encoder(x, x_lengths, speaker_embedding, g=g)

    if gen:
      w = torch.exp(logw) * x_mask * length_scale
      w_ceil = torch.ceil(w)
      y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
      y_max_length = None
    else:
      y_max_length = y.size(2)
    y, y_lengths, y_max_length = self.preprocess(y, y_lengths, y_max_length)
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)

    if gen:
      attn = commons.generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
      y_m = torch.matmul(attn.squeeze(1).transpose(1, 2), x_m.transpose(1, 2)).transpose(1,
                                                                                         2)  # [b, t', t], [b, t, d] -> [b, d, t']
      y_logs = torch.matmul(attn.squeeze(1).transpose(1, 2), x_logs.transpose(1, 2)).transpose(1,
                                                                                               2)  # [b, t', t], [b, t, d] -> [b, d, t']
      logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask

      z = (y_m + torch.exp(y_logs) * torch.randn_like(y_m) * noise_scale) * y_mask
      y, logdet = self.decoder(z, y_mask, g=g, reverse=True)
      return (y, y_m, y_logs, logdet), attn, logw, logw_, x_m, x_logs
    else:
      z, logdet = self.decoder(y, y_mask, g=g, reverse=False)
      with torch.no_grad():
        x_s_sq_r = torch.exp(-2 * x_logs)
        logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - x_logs, [1]).unsqueeze(-1)  # [b, t, 1]
        logp2 = torch.matmul(x_s_sq_r.transpose(1, 2), -0.5 * (z ** 2))  # [b, t, d] x [b, d, t'] = [b, t, t']
        logp3 = torch.matmul((x_m * x_s_sq_r).transpose(1, 2), z)  # [b, t, d] x [b, d, t'] = [b, t, t']
        logp4 = torch.sum(-0.5 * (x_m ** 2) * x_s_sq_r, [1]).unsqueeze(-1)  # [b, t, 1]
        logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']

        # Only used during training, which is done on linux
        # imports cython function which will not work on windows

        import tts_dev.glow_model.monotonic_align as monotonic_align

        attn = monotonic_align.maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()
      y_m = torch.matmul(attn.squeeze(1).transpose(1, 2), x_m.transpose(1, 2)).transpose(1,
                                                                                         2)  # [b, t', t], [b, t, d] -> [b, d, t']
      y_logs = torch.matmul(attn.squeeze(1).transpose(1, 2), x_logs.transpose(1, 2)).transpose(1,
                                                                                               2)  # [b, t', t], [b, t, d] -> [b, d, t']
      logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask

      return (z, y_m, y_logs, logdet), attn, logw, logw_, x_m, x_logs
示例#6
0
  def forward(self, x, x_lengths,g=None):
    g=None

    x = self.pre_enc(x)

    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

    x = self.encoder(x * x_mask, x_mask,g)

    stats = self.proj(x) * x_mask

    m, logs = torch.split(stats, self.out_channels, dim=1)
    return x, m, logs, x_mask
示例#7
0
    def forward(self,
                x,
                x_lengths,
                y=None,
                y_lengths=None,
                g=None,
                gen=False,
                noise_scale=1.,
                length_scale=1.):
        if g is not None:
            g = F.normalize(self.emb_g(g)).unsqueeze(-1)  # [b, h]
        x_m, x_logs, logw, x_mask = self.encoder(x, x_lengths, g=g)

        if gen:
            w = torch.exp(logw) * x_mask * length_scale
            w_ceil = torch.ceil(w)
            y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
            y_max_length = None
        else:
            y_max_length = y.size(2)
        y, y_lengths, y_max_length = self.preprocess(y, y_lengths,
                                                     y_max_length)
        z_mask = torch.unsqueeze(
            commons.sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)
        attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(z_mask, 2)

        if gen:
            attn = commons.generate_path(w_ceil.squeeze(1),
                                         attn_mask.squeeze(1)).unsqueeze(1)
            z_m = torch.matmul(
                attn.squeeze(1).transpose(1, 2), x_m.transpose(
                    1, 2)).transpose(1,
                                     2)  # [b, t', t], [b, t, d] -> [b, d, t']
            z_logs = torch.matmul(
                attn.squeeze(1).transpose(1, 2), x_logs.transpose(
                    1, 2)).transpose(1,
                                     2)  # [b, t', t], [b, t, d] -> [b, d, t']
            logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask

            z = (z_m + torch.exp(z_logs) * torch.randn_like(z_m) *
                 noise_scale) * z_mask
            y, logdet = self.decoder(z, z_mask, g=g, reverse=True)
            return (y, z_m, z_logs, logdet,
                    z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_)
        else:
            z, logdet = self.decoder(y, z_mask, g=g, reverse=False)
            with torch.no_grad():
                x_s_sq_r = torch.exp(-2 * x_logs)
                logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - x_logs,
                                  [1]).unsqueeze(-1)  # [b, t, 1]
                logp2 = torch.matmul(
                    x_s_sq_r.transpose(1, 2),
                    -0.5 * (z**2))  # [b, t, d] x [b, d, t'] = [b, t, t']
                logp3 = torch.matmul((x_m * x_s_sq_r).transpose(1, 2),
                                     z)  # [b, t, d] x [b, d, t'] = [b, t, t']
                logp4 = torch.sum(-0.5 * (x_m**2) * x_s_sq_r,
                                  [1]).unsqueeze(-1)  # [b, t, 1]
                logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']

                attn = monotonic_align.maximum_path(
                    logp, attn_mask.squeeze(1)).unsqueeze(1).detach()
            z_m = torch.matmul(
                attn.squeeze(1).transpose(1, 2), x_m.transpose(
                    1, 2)).transpose(1,
                                     2)  # [b, t', t], [b, t, d] -> [b, d, t']
            z_logs = torch.matmul(
                attn.squeeze(1).transpose(1, 2), x_logs.transpose(
                    1, 2)).transpose(1,
                                     2)  # [b, t', t], [b, t, d] -> [b, d, t']
            logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask
            return (z, z_m, z_logs, logdet,
                    z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_)