def make_keywords_list(academy_xlsx_path, comp_academy_path, stock_title_path, NaverTrend_path, array2D_path, start_date, end_date, use_navertrend, use_downloaded_navertrend): compressed_words = comp_text.extract_keyword(dir_path=academy_xlsx_path, return_num=5, freq_ctr=0.75) comp_compressed_words = comp_text.extract_keyword(dir_path=comp_academy_path, return_num=100, freq_ctr=0.0) stock_name_list = read_stockname(academy_xlsx_path) compressed_only_words = pinset(compressed_words) comp_only_words = pinset(comp_compressed_words) print("compressed only words") print(compressed_only_words) print("comp only words") print(comp_only_words) print('') # def Remove_words(stock_title_dir_path, stock_file_name, keywords_dir_path, comp_dir_path, array2D_xlsx_path, array2D_xlsx_name) convert_to_str(compressed_only_words) convert_to_str(comp_only_words) search_words, removed_words = remove_useless_words.Remove_words(stock_title_dir_path=stock_title_path, stock_file_name='stock_title', keywords=compressed_only_words, comp_list=comp_only_words) print(" search_words : ") print(search_words) print(" removed_words : ") print(removed_words) result = [] if use_navertrend == True: download_xlsx_from_NaverTrend.download_xlsx(search_words=search_words, start_date=start_date, end_date=end_date, download_path=NaverTrend_path) slope_list = comp_NaverTrend.comp_NaverTrend_xls(dir_path=NaverTrend_path, array2D_xlsx_path=array2D_path) print("slope_list : ") print(slope_list) print(slope_list[:(int)(len(slope_list) / 2)]) for i in range(0, len(slope_list), 1): result.append(slope_list[i][0]) else: result = search_words if use_downloaded_navertrend == True: slope_list = comp_NaverTrend.comp_NaverTrend_xls(dir_path=NaverTrend_path, array2D_xlsx_path=array2D_path) print("slope_list : ") print(slope_list) print(slope_list[:(int)(len(slope_list) / 2)]) for i in range(0, len(slope_list), 1): result.append(slope_list[i][0]) return stock_name_list, result # [[키워드1, 검색어 트래픽], [키워드2, 검색어 트래픽] ... ]으로 초기화 되어있는 리스트를 return합니다.
def Set_comp_keywords_list(self, comp_dir_path, array2D_xlsx_path, array2D_xlsx_name): print("Set comp_keywords_list") comp_dir_path = comp_dir_path + '/' + 'NaverTrend' self.comp_keywords_list = comp_NaverTrend.comp_NaverTrend_xls( dir_path=comp_dir_path, array2D_xlsx_path=array2D_xlsx_path, array2D_xlsx_name=array2D_xlsx_name)
def Set_keywords_list(self, dir_path, array2D_xlsx_path, array2D_xlsx_name): # comp_NaverTrend.py 의 # def comp_NaverTrend_xls(dir_path = None, array2D_xlsx_path=None, array2D_xlsx_name='2D_array.xlsx'): 을 call하여 사용합니다. self.keywords_list = comp_NaverTrend.comp_NaverTrend_xls( dir_path=dir_path, array2D_xlsx_path=array2D_xlsx_path, array2D_xlsx_name=array2D_xlsx_name)
def Keywords(start_date, end_date, word_list, comp_word_list, chrome_path='c:\\data\\chromedriver.exe', default_path='', academy_xlsx_path='', NaverTrend_path='', array2D_path='', stock_title_path='', original_stock_title_path='C:/data/Keywords/Stock_title', update_stock_title=False): if default_path == '': # 기본경로를 설정해줍니다. default_path = 'C:/data/' + 'Keywords/' + datetime.datetime.now( ).strftime('%Y-%m-%d_%H-%M-%S') + word_list[0] + '_포함_' + str( len(word_list)) + '_종목' # 경로설정하는 부분. academy_xlsx_path, NaverTrend_path, array2D_path, stock_title_path = path_controller( default_path, academy_xlsx_path, NaverTrend_path, array2D_path, stock_title_path) comp_default_path = default_path + '/' + 'Comp_data' comp_academy_path, comp_NaverTrend_path, comp_array2D_path, comp_stock_title_path = path_controller( comp_default_path) # 분석하려고 하는 그룹의 데이터를 받아옴 get_keyword_from_academy_re.download_keywords( start_date=start_date, end_date=end_date, search_key=word_list, ID='academy', PWD='academy123', download_path=academy_xlsx_path, chrome_path=chrome_path) # 비교 대조군을 만들기 위한 데이터를 받아옴 get_keyword_from_academy_re.download_keywords( start_date=start_date, end_date=end_date, search_key=comp_word_list, ID='academy', PWD='academy123', download_path=comp_academy_path, chrome_path=chrome_path) compressed_words = comp_text.extract_keyword(dir_path=academy_xlsx_path, return_num=5, freq_ctr=0.75) comp_compressed_words = comp_text.extract_keyword( dir_path=comp_academy_path, return_num=100, freq_ctr=0.0) compressed_only_words = pinset(compressed_words) comp_only_words = pinset(comp_compressed_words) print("compressed only words") print(compressed_only_words) print("comp only words") print(comp_only_words) print('') get_keyword_from_academy_re.dir_path_check( array2D_path) #2D_array_path check and make directory get_keyword_from_academy_re.dir_path_check(comp_array2D_path) if update_stock_title: # 기업명을 네이버에서 새로 받아오도록 하는 설정 get_stock_title.Make_Stock_title_xlsx( dir_path=stock_title_path) # 기업명을 네이버에서 모두 가져옴 else: get_stock_title.Copy_Stock_title_xlsx( original_path=original_stock_title_path, copy_path=stock_title_path, file_name='stock_title.xlsx') # def Remove_words(stock_title_dir_path, stock_file_name, keywords_dir_path, comp_dir_path, array2D_xlsx_path, array2D_xlsx_name) convert_to_str(compressed_only_words) convert_to_str(comp_only_words) search_words, removed_words = remove_useless_words.Remove_words( stock_title_dir_path=stock_title_path, stock_file_name='stock_title', keywords=compressed_only_words, comp_list=comp_only_words) print(" search_words : ") print(search_words) print(" removed_words : ") print(removed_words) download_xlsx_from_NaverTrend.download_xlsx(search_words=search_words, start_date=start_date, end_date=end_date, download_path=NaverTrend_path) slope_list = comp_NaverTrend.comp_NaverTrend_xls( dir_path=NaverTrend_path, array2D_xlsx_path=array2D_path) print("slope_list : ") print(slope_list) print(slope_list[:(int)(len(slope_list) / 2)]) return slope_list # [[키워드1, 검색어 트래픽], [키워드2, 검색어 트래픽] ... ]으로 초기화 되어있는 리스트를 return합니다.