示例#1
0
def intersection_plane_plane(plane1, plane2, tol=1e-6):
    """Computes the intersection of two planes

    Parameters
    ----------
    plane1 : tuple
        The base point and normal (normalized) defining the 1st plane.
    plane2 : tuple
        The base point and normal (normalized) defining the 2nd plane.
    tol : float, optional
        A tolerance for membership verification.
        Default is ``1e-6``.

    Returns
    -------
    line : tuple
        Two points defining the intersection line. None if planes are parallel.

    """
    o1, n1 = plane1
    o2, n2 = plane2

    if fabs(dot_vectors(n1, n2)) >= 1 - tol:
        return None

    # direction of intersection line
    d = cross_vectors(n1, n2)
    # vector in plane 1 perpendicular to the direction of the intersection line
    v1 = cross_vectors(d, n1)
    # point on plane 1
    p1 = add_vectors(o1, v1)

    x1 = intersection_line_plane((o1, p1), plane2, tol=tol)
    x2 = add_vectors(x1, d)
    return x1, x2
示例#2
0
 def is_on_same_side(p1, p2, segment):
     a, b = segment
     v = subtract_vectors(b, a)
     c1 = cross_vectors(v, subtract_vectors(p1, a))
     c2 = cross_vectors(v, subtract_vectors(p2, a))
     if dot_vectors(c1, c2) >= 0:
         return True
     return False
示例#3
0
def is_coplanar(points, tol=0.01):
    """Determine if the points are coplanar.

    Parameters
    ----------
    points : sequence
        A sequence of locations in three-dimensional space.
    tol : float, optional
        A tolerance for planarity validation.
        Default is ``0.01``.

    Returns
    -------
    bool
        ``True`` if the points are coplanar.
        ``False`` otherwise.

    Notes
    -----
    Compute the normal vector (cross product) of the vectors formed by the first
    three points. Include one more vector at a time to compute a new normal and
    compare with the original normal. If their cross product is not zero, they
    are not parallel, which means the point are not in the same plane.

    Four points are coplanar if the volume of the tetrahedron defined by them is
    0. Coplanarity is equivalent to the statement that the pair of lines
    determined by the four points are not skew, and can be equivalently stated
    in vector form as (x2 - x0).[(x1 - x0) x (x3 - x2)] = 0.

    """
    tol2 = tol**2

    if len(points) == 4:
        v01 = subtract_vectors(points[1], points[0])
        v02 = subtract_vectors(points[2], points[0])
        v23 = subtract_vectors(points[3], points[0])
        res = dot_vectors(v02, cross_vectors(v01, v23))
        return res**2 < tol2

    # len(points) > 4
    # compare length of cross product vector to tolerance

    a, b, c = sample(points, 3)

    u = subtract_vectors(b, a)
    v = subtract_vectors(c, a)
    w = cross_vectors(u, v)

    for i in range(0, len(points) - 2):
        u = v
        v = subtract_vectors(points[i + 2], points[i + 1])
        wuv = cross_vectors(w, cross_vectors(u, v))

        if wuv[0]**2 > tol2 or wuv[1]**2 > tol2 or wuv[2]**2 > tol2:
            return False

    return True
示例#4
0
def circle_from_points(a, b, c):
    """Construct a circle from three points.

    Parameters
    ----------
    a : [float, float, float] | :class:`compas.geometry.Point`
        XYZ coordinates.
    b : [float, float, float] | :class:`compas.geometry.Point`
        XYZ coordinates.
    c : [float, float, float] | :class:`compas.geometry.Point`
        XYZ coordinates.

    Returns
    -------
    [float, float, float]
        Center of the circle.
    float
        Radius of the circle.
    [float, float, float]
        Normal of the plane containing the circle.

    Notes
    -----
    For more information, see [1]_.

    References
    ----------
    .. [1] Wikipedia. *Circumscribed circle*.
           Available at: https://en.wikipedia.org/wiki/Circumscribed_circle.

    Examples
    --------
    >>>

    """
    ab = subtract_vectors(b, a)
    cb = subtract_vectors(b, c)
    ba = subtract_vectors(a, b)
    ca = subtract_vectors(a, c)
    ac = subtract_vectors(c, a)
    bc = subtract_vectors(c, b)
    normal = normalize_vector(cross_vectors(ab, ac))
    d = 2 * length_vector_sqrd(cross_vectors(ba, cb))
    A = length_vector_sqrd(cb) * dot_vectors(ba, ca) / d
    B = length_vector_sqrd(ca) * dot_vectors(ab, cb) / d
    C = length_vector_sqrd(ba) * dot_vectors(ac, bc) / d
    Aa = scale_vector(a, A)
    Bb = scale_vector(b, B)
    Cc = scale_vector(c, C)
    center = sum_vectors([Aa, Bb, Cc])
    radius = length_vector(subtract_vectors(a, center))
    return center, radius, normal
示例#5
0
def is_coplanar(points, tol=0.01):
    """Determine if the points are coplanar.

    Parameters
    ----------
    points : list of points
        A sequence of point locations.
    tol : float, optional
        A tolerance for planarity validation.
        Default is ``0.01``.

    Returns
    -------
    bool
        ``True`` if the points are coplanar.
        ``False`` otherwise.

    Notes
    -----
    Compute the normal vector (cross product) of the vectors formed by the first
    three points. Include one more vector at a time to compute a new normal and
    compare with the original normal. If their cross product is not zero, they
    are not parallel, which means the point are not in the same plane.

    Four points are coplanar if the volume of the tetrahedron defined by them is
    0. Coplanarity is equivalent to the statement that the pair of lines
    determined by the four points are not skew, and can be equivalently stated
    in vector form as (x2 - x0).[(x1 - x0) x (x3 - x2)] = 0.

    """
    if len(points) < 4:
        return True

    tol2 = tol ** 2

    if len(points) == 4:
        v01 = subtract_vectors(points[1], points[0])
        v02 = subtract_vectors(points[2], points[0])
        v23 = subtract_vectors(points[3], points[2])
        res = dot_vectors(v02, cross_vectors(v01, v23))
        return res**2 < tol2

    a, b, c = points[:3]
    ab = subtract_vectors(b, a)
    n0 = cross_vectors(ab, subtract_vectors(c, a))
    points = points[3:]
    for c in points:
        n1 = cross_vectors(ab, subtract_vectors(c, a))
        if length_vector_sqrd(cross_vectors(n0, n1)) > tol:
            return False
    return True
示例#6
0
def is_intersection_line_line(l1, l2, tol=1e-6):
    """Verifies if two lines intersect.

    Parameters
    ----------
    l1 : [point, point] | :class:`compas.geometry.Line`
        A line.
    l2 : [point, point] | :class:`compas.geometry.Line`
        A line.
    tol : float, optional
        A tolerance for intersection verification.

    Returns
    --------
    bool
        True if the lines intersect in one point.
        False if the lines are skew, parallel or lie on top of each other.

    """
    a, b = l1
    c, d = l2

    e1 = normalize_vector(subtract_vectors(b, a))
    e2 = normalize_vector(subtract_vectors(d, c))

    # check for parallel lines
    if abs(dot_vectors(e1, e2)) > 1.0 - tol:
        return False

    # check for intersection
    if abs(dot_vectors(cross_vectors(e1, e2), subtract_vectors(c, a))) < tol:
        return True
    return False
示例#7
0
def normal_triangle(triangle, unitized=True):
    """Compute the normal vector of a triangle.

    Parameters
    ----------
    triangle : [point, point, point] | :class:`compas.geometry.Polygon`
        A list of triangle point coordinates.
    unitized : bool, optional
        If True, unitize the normal vector.

    Returns
    -------
    [float, float, float]
        The normal vector.

    Raises
    ------
    AssertionError
        If the triangle does not have three vertices.

    """
    assert len(triangle) == 3, "Three points are required."
    a, b, c = triangle
    ab = subtract_vectors(b, a)
    ac = subtract_vectors(c, a)
    n = cross_vectors(ab, ac)
    if not unitized:
        return n
    lvec = 1 / length_vector(n)
    return [lvec * n[0], lvec * n[1], lvec * n[2]]
示例#8
0
def intersection_line_triangle(line, triangle, tol=1e-6):
    """Computes the intersection point of a line (ray) and a triangle
    based on the Moeller Trumbore intersection algorithm

    Parameters
    ----------
    line : tuple
        Two points defining the line.
    triangle : list of list of float
        XYZ coordinates of the triangle corners.
    tol : float, optional
        A tolerance for membership verification.
        Default is ``1e-6``.

    Returns
    -------
    point : tuple
        The intersectin point.
    None
        If the intersection does not exist.

    """
    a, b, c = triangle
    ab = subtract_vectors(b, a)
    ac = subtract_vectors(c, a)
    n = cross_vectors(ab, ac)
    plane = a, n

    x = intersection_line_plane(line, plane, tol=tol)

    if x:
        if is_point_in_triangle(x, triangle):
            return x
示例#9
0
def distance_point_line_sqrd(point, line):
    """Compute the squared distance between a point and a line.

    Parameters
    ----------
    point : sequence of float
        XYZ coordinates of the point.
    line : list, tuple
        Line defined by two points.

    Returns
    -------
    float
        The squared distance between the point and the line.

    Notes
    -----
    For more info, see [1]_.

    References
    ----------
    .. [1] Wikipedia. *Distance from a point to a line*.
           Available at: https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line.

    """
    a, b = line
    ab = subtract_vectors(b, a)
    pa = subtract_vectors(a, point)
    pb = subtract_vectors(b, point)
    length = length_vector_sqrd(cross_vectors(pa, pb))
    length_ab = length_vector_sqrd(ab)
    return length / length_ab
示例#10
0
def normal_triangle(triangle, unitized=True):
    """Compute the normal vector of a triangle.

    Parameters
    ----------
    triangle : list of list
        A list of triangle point coordinates.

    Returns
    -------
    list
        The normal vector.

    Raises
    ------
    ValueError
        If the triangle does not have three vertices.

    """
    assert len(triangle) == 3, "Three points are required."
    a, b, c = triangle
    ab = subtract_vectors(b, a)
    ac = subtract_vectors(c, a)
    n = cross_vectors(ab, ac)
    if not unitized:
        return n
    lvec = 1 / length_vector(n)
    return [lvec * n[0], lvec * n[1], lvec * n[2]]
示例#11
0
def is_intersection_line_line(l1, l2, tol=1e-6):
    """Verifies if two lines intersect.

    Parameters
    ----------
    l1 : tuple
        A sequence of XYZ coordinates of two 3D points representing two points on the line.
    l2 : tuple
        A sequence of XYZ coordinates of two 3D points representing two points on the line.
    tol : float, optional
        A tolerance for intersection verification. Default is ``1e-6``.

    Returns
    --------
    bool
        ``True``if the lines intersect in one point.
        ``False`` if the lines are skew, parallel or lie on top of each other.
    """
    a, b = l1
    c, d = l2

    e1 = normalize_vector(subtract_vectors(b, a))
    e2 = normalize_vector(subtract_vectors(d, c))

    # check for parallel lines
    if abs(dot_vectors(e1, e2)) > 1.0 - tol:
        return False

    # check for intersection
    d_vector = cross_vectors(e1, e2)
    if dot_vectors(d_vector, subtract_vectors(c, a)) == 0:
        return True

    return False
示例#12
0
def intersection_line_line(l1, l2, tol=1e-6):
    """Computes the intersection of two lines.

    Parameters
    ----------
    l1 : tuple, list
        XYZ coordinates of two points defining the first line.
    l2 : tuple, list
        XYZ coordinates of two points defining the second line.
    tol : float, optional
        A tolerance for membership verification.
        Default is ``1e-6``.

    Returns
    -------
    list
        XYZ coordinates of the two points marking the shortest distance between the lines.
        If the lines intersect, these two points are identical.
        If the lines are skewed and thus only have an apparent intersection, the two
        points are different.
        If the lines are parallel, the return value is [None, None].

    Examples
    --------
    >>>

    """
    a, b = l1
    c, d = l2

    ab = subtract_vectors(b, a)
    cd = subtract_vectors(d, c)

    n = cross_vectors(ab, cd)
    n1 = normalize_vector(cross_vectors(ab, n))
    n2 = normalize_vector(cross_vectors(cd, n))

    plane_1 = (a, n1)
    plane_2 = (c, n2)

    i1 = intersection_line_plane(l1, plane_2, tol=tol)
    i2 = intersection_line_plane(l2, plane_1, tol=tol)

    return i1, i2
示例#13
0
def is_polygon_convex(polygon):
    """Determine if a polygon is convex.

    Parameters
    ----------
    polygon : sequence of sequence of floats
        The XYZ coordinates of the corners of the polygon.

    Notes
    -----
    Use this function for *spatial* polygons.
    If the polygon is in a horizontal plane, use :func:`is_polygon_convex_xy` instead.

    Returns
    -------
    bool
        ``True`` if the polygon is convex.
        ``False`` otherwise.

    See Also
    --------
    is_polygon_convex_xy

    Examples
    --------
    >>> polygon = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.4, 0.4, 0.0], [0.0, 1.0, 0.0]]
    >>> is_polygon_convex(polygon)
    False
    """
    a = polygon[0]
    o = polygon[1]
    b = polygon[2]
    oa = subtract_vectors(a, o)
    ob = subtract_vectors(b, o)
    n0 = cross_vectors(oa, ob)
    for a, o, b in window(polygon + polygon[:2], 3):
        oa = subtract_vectors(a, o)
        ob = subtract_vectors(b, o)
        n = cross_vectors(oa, ob)
        if dot_vectors(n, n0) >= 0:
            continue
        else:
            return False
    return True
示例#14
0
def is_polygon_convex(polygon):
    """Determine if a polygon is convex.

    Parameters
    ----------
    polygon : sequence[point] | :class:`compas.geometry.Polygon`
        A polygon.

    Returns
    -------
    bool
        True if the polygon is convex.
        False otherwise.

    Notes
    -----
    Use this function for *spatial* polygons.
    If the polygon is in a horizontal plane, use :func:`is_polygon_convex_xy` instead.

    Examples
    --------
    >>> polygon = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.4, 0.4, 0.0], [0.0, 1.0, 0.0]]
    >>> is_polygon_convex(polygon)
    False

    """
    a = polygon[0]
    o = polygon[1]
    b = polygon[2]
    oa = subtract_vectors(a, o)
    ob = subtract_vectors(b, o)
    n0 = cross_vectors(oa, ob)
    for a, o, b in window(polygon + polygon[:2], 3):
        oa = subtract_vectors(a, o)
        ob = subtract_vectors(b, o)
        n = cross_vectors(oa, ob)
        if dot_vectors(n, n0) >= 0:
            continue
        else:
            return False
    return True
示例#15
0
文件: normals.py 项目: yishizu/compas
def normal_polygon(polygon, unitized=True):
    """Compute the normal of a polygon defined by a sequence of points.

    Parameters
    ----------
    polygon : list of list
        A list of polygon point coordinates.

    Returns
    -------
    list
        The normal vector.

    Raises
    ------
    ValueError
        If less than three points are provided.

    Notes
    -----
    The points in the list should be unique. For example, the first and last
    point in the list should not be the same.

    """
    p = len(polygon)

    assert p > 2, "At least three points required"

    nx = 0
    ny = 0
    nz = 0

    o = centroid_points(polygon)
    a = polygon[-1]
    oa = subtract_vectors(a, o)

    for i in range(p):
        b = polygon[i]
        ob = subtract_vectors(b, o)
        n = cross_vectors(oa, ob)
        oa = ob

        nx += n[0]
        ny += n[1]
        nz += n[2]

    if not unitized:
        return nx, ny, nz

    length = length_vector([nx, ny, nz])

    return nx / length, ny / length, nz / length
示例#16
0
def normal_polygon(polygon, unitized=True):
    """Compute the normal of a polygon defined by a sequence of points.

    Parameters
    ----------
    polygon : sequence[point] | :class:`compas.geometry.Polygon`
        A list of polygon point coordinates.
    unitized : bool, optional
        If True, unitize the normal vector.

    Returns
    -------
    [float, float, float]
        The normal vector.

    Raises
    ------
    AssertionError
        If less than three points are provided.

    Notes
    -----
    The points in the list should be unique. For example, the first and last
    point in the list should not be the same.

    """
    p = len(polygon)

    assert p > 2, "At least three points required"

    nx = 0
    ny = 0
    nz = 0

    o = centroid_points(polygon)
    a = polygon[-1]
    oa = subtract_vectors(a, o)

    for i in range(p):
        b = polygon[i]
        ob = subtract_vectors(b, o)
        n = cross_vectors(oa, ob)
        oa = ob

        nx += n[0]
        ny += n[1]
        nz += n[2]

    if not unitized:
        return [nx, ny, nz]

    return normalize_vector([nx, ny, nz])
示例#17
0
文件: size.py 项目: compas-dev/compas
def area_polygon(polygon):
    """Compute the area of a polygon.

    Parameters
    ----------
    polygon : sequence[point] | :class:`compas.geometry.Polygon`
        The XYZ coordinates of the vertices/corners of the polygon.
        The vertices are assumed to be in order.
        The polygon is assumed to be closed:
        the first and last vertex in the sequence should not be the same.

    Returns
    -------
    float
        The area of the polygon.

    Examples
    --------
    >>>
    """
    o = centroid_points(polygon)
    a = polygon[-1]
    b = polygon[0]
    oa = subtract_vectors(a, o)
    ob = subtract_vectors(b, o)
    n0 = cross_vectors(oa, ob)
    area = 0.5 * length_vector(n0)
    for i in range(0, len(polygon) - 1):
        oa = ob
        b = polygon[i + 1]
        ob = subtract_vectors(b, o)
        n = cross_vectors(oa, ob)
        if dot_vectors(n, n0) > 0:
            area += 0.5 * length_vector(n)
        else:
            area -= 0.5 * length_vector(n)
    return area
示例#18
0
def distance_line_line(l1, l2, tol=0.0):
    r"""Compute the shortest distance between two lines.

    Parameters
    ----------
    l1 : tuple
        Two points defining a line.
    l2 : tuple
        Two points defining a line.

    Returns
    -------
    float
        The distance between the two lines.

    Notes
    -----
    The distance is the absolute value of the dot product of a unit vector that
    is perpendicular to the two lines, and the vector between two points on the lines ([1]_, [2]_).

    If each of the lines is defined by two points (:math:`l_1 = (\mathbf{x_1}, \mathbf{x_2})`,
    :math:`l_2 = (\mathbf{x_3}, \mathbf{x_4})`), then the unit vector that is
    perpendicular to both lines is...

    References
    ----------
    .. [1] Weisstein, E.W. *Line-line Distance*.
           Available at: http://mathworld.wolfram.com/Line-LineDistance.html.
    .. [2] Wikipedia. *Skew lines Distance*.
           Available at: https://en.wikipedia.org/wiki/Skew_lines#Distance.

    Examples
    --------
    >>>

    """
    a, b = l1
    c, d = l2
    ab = subtract_vectors(b, a)
    cd = subtract_vectors(d, c)
    ac = subtract_vectors(c, a)
    n = cross_vectors(ab, cd)
    length = length_vector(n)
    if length <= tol:
        return distance_point_point(closest_point_on_line(l1[0], l2), l1[0])
    n = scale_vector(n, 1.0 / length)
    return fabs(dot_vectors(n, ac))
示例#19
0
def angle_vectors_signed(u, v, normal, deg=False, threshold=1e-3):
    """Computes the signed angle between two vectors.

    It calculates the angle such that rotating vector u about the normal by
    angle would result in a vector that looks into the same direction as v.

    Parameters
    ----------
    u : [float, float, float] | :class:`compas.geometry.Vector`
        XYZ components of the first vector.
    v : [float, float, float] | :class:`compas.geometry.Vector`
        XYZ components of the second vector.
    normal : [float, float, float] | :class:`compas.geometry.Vector`
        XYZ components of the plane's normal spanned by u and v.
    deg : bool, optional
        If True, returns the angle in degrees.
    threshold : float, optional
        The threshold (radians) used to consider if the angle is zero.

    Returns
    -------
    float
        The signed angle in radians (in degrees if deg == True).

    Examples
    --------
    >>> normal = [0.0, 0.0, 1.0]
    >>> angle_vectors_signed([0.0, 1.0, 0.0], [1.0, 0.0, 0.0], normal)
    -1.57079
    """
    angle = angle_vectors(u, v)
    normal_uv = cross_vectors(u, v)

    if length_vector(normal_uv) > threshold:
        # check if normal_uv has the same direction as normal
        angle_btw_normals = angle_vectors(normal, normal_uv)
        if angle_btw_normals > threshold:
            angle *= -1

    if deg:
        return degrees(angle)
    else:
        return angle
示例#20
0
def distance_point_line(point, line):
    """Compute the distance between a point and a line.

    Parameters
    ----------
    point : list, tuple
        Point location.
    line : list, tuple
        Line defined by two points.

    Returns
    -------
    float
        The distance between the point and the line.

    Notes
    -----
    This implementation computes the *right angle distance* from a point P to a
    line defined by points A and B as twice the area of the triangle ABP divided
    by the length of AB [1]_.

    References
    ----------
    .. [1] Wikipedia. *Distance from a point to a line*.
           Available at: https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line

    Examples
    --------
    >>>

    """
    a, b = line
    ab = subtract_vectors(b, a)
    pa = subtract_vectors(a, point)
    pb = subtract_vectors(b, point)
    length = length_vector(cross_vectors(pa, pb))
    length_ab = length_vector(ab)
    return length / length_ab
示例#21
0
文件: size.py 项目: compas-dev/compas
def volume_polyhedron(polyhedron):
    r"""Compute the volume of a polyhedron represented by a closed mesh.

    Parameters
    ----------
    polyhedron : tuple[sequence[[float, float, float] | :class:`compas.geometry.Point`], sequence[sequence[int]]]
        The vertices and faces of the polyhedron.

    Returns
    -------
    float
        The volume of the polyhedron.

    Notes
    -----
    This implementation is based on the divergence theorem, the fact that the
    *area vector* is constant for each face, and the fact that the area of each
    face can be computed as half the length of the cross product of two adjacent
    edge vectors [1]_.

    .. math::
        :nowrap:

        \begin{align}
            V  = \int_{P} 1
              &= \frac{1}{3} \int_{\partial P} \mathbf{x} \cdot \mathbf{n} \\
              &= \frac{1}{3} \sum_{i=0}^{N-1} \int{A_{i}} a_{i} \cdot n_{i} \\
              &= \frac{1}{6} \sum_{i=0}^{N-1} a_{i} \cdot \hat n_{i}
        \end{align}

    Warnings
    --------
    The volume computed by this funtion is only correct if the polyhedron is convex,
    has planar faces, and is positively oriented (all face normals point outwards).

    References
    ----------
    .. [1] Nurnberg, R. *Calculating the area and centroid of a polygon in 2d*.
           Available at: http://wwwf.imperial.ac.uk/~rn/centroid.pdf

    """
    xyz, faces = polyhedron

    V = 0
    for vertices in faces:
        if len(vertices) == 3:
            triangles = [vertices]
        else:
            centroid = centroid_points([xyz[i] for i in vertices])
            i = len(xyz)
            xyz.append(centroid)
            triangles = []
            for u, v in pairwise(vertices + vertices[0:1]):
                triangles.append([i, u, v])

        for u, v, w in triangles:
            a = xyz[u]
            b = xyz[v]
            c = xyz[w]
            ab = subtract_vectors(b, a)
            ac = subtract_vectors(c, a)
            n = cross_vectors(ab, ac)
            V += dot_vectors(a, n)
    return V / 6.
示例#22
0
文件: average.py 项目: yishizu/compas
def centroid_polygon(polygon):
    r"""Compute the centroid of the surface of a polygon.

    Parameters
    ----------
    polygon : list of point
        A sequence of polygon point coordinates.

    Returns
    -------
    list
        The XYZ coordinates of the centroid.

    Notes
    -----
    The centroid is the centre of gravity of the polygon surface if mass would be
    uniformly distributed over it.

    It is calculated by triangulating the polygon surface with respect to the centroid
    of the polygon vertices, and then computing the centroid of the centroids of
    the individual triangles, weighted by the corresponding triangle area in
    proportion to the total surface area.

    .. math::

        c_x = \frac{1}{A} \sum_{i=1}^{N} A_i \cdot c_{x,i}
        c_y = \frac{1}{A} \sum_{i=1}^{N} A_i \cdot c_{y,i}
        c_z = \frac{1}{A} \sum_{i=1}^{N} A_i \cdot c_{z,i}

    Warning
    -------
    The polygon need not be convex.

    The polygon need not be flat. However, it is unclear what the meaning of the
    centroid is in that case.

    The polygon may be self-intersecting. However, it is unclear what the meaning
    of the centroid is in that case.

    Examples
    --------
    >>> polygon = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]
    >>> centroid_polygon(polygon)
    """
    p = len(polygon)

    assert p > 2, "At least three points required"

    if p == 3:
        return centroid_points(polygon)

    cx, cy, cz = 0.0, 0.0, 0.0
    A2 = 0

    o = centroid_points(polygon)
    a = polygon[-1]
    b = polygon[0]
    oa = subtract_vectors(a, o)
    ob = subtract_vectors(b, o)
    n0 = cross_vectors(oa, ob)

    x, y, z = centroid_points([o, a, b])
    a2 = length_vector(n0)

    A2 += a2
    cx += a2 * x
    cy += a2 * y
    cz += a2 * z

    for i in range(1, len(polygon)):
        a = b
        b = polygon[i]

        oa = ob
        ob = subtract_vectors(b, o)

        n = cross_vectors(oa, ob)
        x, y, z = centroid_points([o, a, b])

        if dot_vectors(n, n0) > 0:
            a2 = length_vector(n)
        else:
            a2 = -length_vector(n)

        A2 += a2
        cx += a2 * x
        cy += a2 * y
        cz += a2 * z

    if A2 == 0:
        return polygon[0]

    return [cx / A2, cy / A2, cz / A2]
示例#23
0
def is_intersection_line_triangle(line, triangle, tol=1e-6):
    """Verifies if a line (ray) intersects with a triangle.

    Parameters
    ----------
    line : [point, point] | :class:`compas.geometry.Line`
        A line.
    triangle : [point, point, point]
        A triangle.
    tol : float, optional
        A tolerance for intersection verification.

    Returns
    -------
    bool
        True if the line (ray) intersects with the triangle.
        False otherwise.

    Notes
    -----
    Based on the Moeller Trumbore intersection algorithm.
    The line is treated as continues, directed ray and not as line segment with a start and end point

    Examples
    --------
    >>>

    """
    a, b, c = triangle
    # direction vector and base point of line
    v1 = subtract_vectors(line[1], line[0])
    p1 = line[0]
    # Find vectors for two edges sharing triangle vertex 1
    e1 = subtract_vectors(b, a)
    e2 = subtract_vectors(c, a)
    # Begin calculating determinant - also used to calculate u parameter
    p = cross_vectors(v1, e2)
    # if determinant is near zero, ray lies in plane of triangle
    det = dot_vectors(e1, p)

    # NOT CULLING
    if det > -tol and det < tol:
        return False

    inv_det = 1.0 / det
    # calculate distance from V1 to ray origin
    t = subtract_vectors(p1, a)
    # Calculate u parameter and make_blocks bound
    u = dot_vectors(t, p) * inv_det

    # The intersection lies outside of the triangle
    if u < 0.0 or u > 1.0:
        return False

    # Prepare to make_blocks v parameter
    q = cross_vectors(t, e1)
    # Calculate V parameter and make_blocks bound
    v = dot_vectors(v1, q) * inv_det

    # The intersection lies outside of the triangle
    if v < 0.0 or u + v > 1.0:
        return False

    t = dot_vectors(e2, q) * inv_det

    if t > tol:
        return True
    # No hit
    return False
示例#24
0
文件: average.py 项目: yishizu/compas
def centroid_polyhedron(polyhedron):
    """Compute the center of mass of a polyhedron.

    Parameters
    ----------
    polyhedron : tuple
        The coordinates of the vertices,
        and the indices of the vertices forming the faces.

    Returns
    -------
    list
        XYZ coordinates of the center of mass.

    Warning
    -------
    This function assumes that the vertex cycles of the faces are such that the
    face normals are consistently pointing outwards, resulting in a *positive*
    polyhedron.

    Examples
    --------
    >>> from compas.geometry._core import Polyhedron
    >>> p = Polyhedron.generate(6)
    >>> centroid_polyhedron(p)
    [0.0, 0.0, 0.0]
    """
    vertices, faces = polyhedron

    V = 0
    x = 0.0
    y = 0.0
    z = 0.0
    ex = [1.0, 0.0, 0.0]
    ey = [0.0, 1.0, 0.0]
    ez = [0.0, 0.0, 1.0]

    for face in faces:
        if len(face) == 3:
            triangles = [face]
        else:
            centroid = centroid_points([vertices[index] for index in face])
            w = len(vertices)
            vertices.append(centroid)
            triangles = [[w, u, v] for u, v in pairwise(face + face[0:1])]

        for triangle in triangles:
            a = vertices[triangle[0]]
            b = vertices[triangle[1]]
            c = vertices[triangle[2]]
            ab = subtract_vectors(b, a)
            ac = subtract_vectors(c, a)
            n = cross_vectors(ab, ac)
            V += dot_vectors(a, n)

            nx = dot_vectors(n, ex)
            ny = dot_vectors(n, ey)
            nz = dot_vectors(n, ez)

            ab = add_vectors(a, b)
            bc = add_vectors(b, c)
            ca = add_vectors(c, a)

            ab_x2 = dot_vectors(ab, ex)**2
            bc_x2 = dot_vectors(bc, ex)**2
            ca_x2 = dot_vectors(ca, ex)**2

            x += nx * (ab_x2 + bc_x2 + ca_x2)

            ab_y2 = dot_vectors(ab, ey)**2
            bc_y2 = dot_vectors(bc, ey)**2
            ca_y2 = dot_vectors(ca, ey)**2

            y += ny * (ab_y2 + bc_y2 + ca_y2)

            ab_z2 = dot_vectors(ab, ez)**2
            bc_z2 = dot_vectors(bc, ez)**2
            ca_z2 = dot_vectors(ca, ez)**2

            z += nz * (ab_z2 + bc_z2 + ca_z2)

            # for j in (-1, 0, 1):
            #     ab = add_vectors(vertices[triangle[j]], vertices[triangle[j + 1]])
            #     x += nx * dot_vectors(ab, ex) ** 2
            #     y += ny * dot_vectors(ab, ey) ** 2
            #     z += nz * dot_vectors(ab, ez) ** 2

    V = V / 6.0

    if V < 1e-9:
        d = 1.0 / (2 * 24)
    else:
        d = 1.0 / (2 * 24 * V)

    x *= d
    y *= d
    z *= d

    return [x, y, z]