def addOutputs(self): Complete.addOutputs(self) self.addOutput( OutputVector(self.OUTPUT_WATERSHEDS_LAYER, self.tr('watersheds_vector'))) self.addOutput( OutputVector(self.OUTPUT_BLUESPOTS_LAYER, self.tr('bluespots_vector')))
def createOutput(self): Complete.createOutput(self) #Create vector files self.writeVectorOutput( 'watersheds.shp', self.getOutputFromName(self.OUTPUT_WATERSHEDS_LAYER), self.getParameterValue(self.VECTOR_FORMAT)) self.writeVectorOutput( 'bluespots.shp', self.getOutputFromName(self.OUTPUT_BLUESPOTS_LAYER), self.getParameterValue(self.VECTOR_FORMAT))
class ExternalTask: fetch = FetchAndLock() complete = Complete() def subscribe(self, topic, lockduration, host): self.fetch.sendjson(topic=topic, lockduration=lockduration, host=host) def startautomation(self): if self.fetch.getresponsetext() != "[]": self.fetch.storereponseindict() return True else: return False def getvariable(self, str): return self.fetch.getvariable(str=str) def completeautomation(self, host): print(self.fetch.getid()) print(self.complete.sendcomplete(guid=self.fetch.getid(), host=host)) print(self.complete.getresponse()) #put local variable def putvariable(self, host, varname): json = {"value": "someValue", "type": "String"} putresponse = requests.put( 'http://' + host + '/engine-rest/execution/' + self.fetch.getexecutionid() + '/localVariables/' + varname, json=json) print(putresponse) print(putresponse.text)
def start(): print("Loading the files and preparing the system...") files_list = get_file_list( "technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/c-api") # files_list = get_file_list("technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/whatsnew") complete = Complete(Data(files_list)) # complete = Complete(Data(["technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/about.txt"])) print("The system is ready.") input_ = ' '.join((''.join(i for i in input("\n\nEnter your text: ") if i in string.ascii_letters + ' ')).split()) while (1): text = " " while text[-1] != '#': match_sentences = complete.get_best_k_completions(input_) if len(match_sentences) != 0: for sentence in match_sentences: print( f"{sentence.completed_sentence} ({files_list[sentence.source_text]} {sentence.offset})" ) else: print("there is no items") # print(input_, end="") text = input(input_) input_ += ' '.join( (''.join(i for i in text if i in string.ascii_letters + ' ')).split()) input_ = ' '.join( (''.join(i for i in input("\n\nEnter your text: ") if i in string.ascii_letters + ' ')).split())
def load_data(): files_list = get_file_list(data_path) return Complete(Data(files_list)), files_list
def __init__(self): Complete.__init__(self)
# data.name = args.dataset dataprocess.random_split(data, args.dataseed, args) model = eval(args.complete).Model(data.num_nodes, dataset.num_features, dataset.num_classes, device, args).to(device) optimizer_base = torch.optim.Adam(model.base_parameters(), lr=args.lr, weight_decay=args.wd) optimizer_graph = torch.optim.Adam(model.graph_parameters(), lr=args.lr_graph, weight_decay=args.wd_graph) complete_device = torch.device("cpu") complete_model = Complete(sampled_edge_index, data, model, complete_device, args) compl_acc = 0. model.train() val_acc_epoch_list, best_val_acc = [], 0. val_loss_epoch_list, best_val_loss = [], 1e10 final_test_acc = 0. lr_base, lr_graph = args.lr, args.lr_graph for epoch in range(args.epochs): # Optimize GCN train_loss = [] for batch_data in dataprocess.dataloader(data, complete_model.loop_adj_part, args.batch_size, args.sparse): batch_data.to(device)
import PIL import PIL.Image as Image SEQUENCE_LENGTH = 1 def save_image(image, title, index): images = np.array([image]) images = np.clip(np.rint((images + 1.0) / 2.0 * 255.0), 0.0, 255.0).astype(np.uint8) # [-1,1] => [0,255] images = images.transpose(0, 2, 3, 1) # NCHW => NHWC PIL.Image.fromarray(images[0], 'RGB').save( 'img-' + str(index) + '-' + title + '.png') complete = Complete() # source_image shape (256, 256, 3) # source_image = scipy.misc.imread('/source/bayeux1.png', # mode='RGB').astype(np.float) source_image = scipy.misc.imread('/source/Black256.jpg', mode='RGB').astype(np.float) # RESHAPE TEST IMAGE # source_image shape (256, 256, 3) # generated shape is (3, 256, 256) reshaped_source_image = source_image.transpose(2, 0, 1) reshaped_source_image = (reshaped_source_image / 255) * 2.0 - 1.0