'/Users/Apple/Desktop/first_chain_code_results/9_ses_set6_10run/rr_data80.txt' ) rr_data45 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set6_10run/rr_data81.txt' ) rr_data46 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set6_10run/rr_data82.txt' ) rr_data47 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set6_10run/rr_data83.txt' ) ######################################### 3 concat_data = concatenate_func(rr_data39, rr_data40, rr_data41, rr_data42, rr_data43, rr_data44, rr_data45, rr_data46, rr_data47) print(concat_data.shape) file = open('concat_data.txt', "w") numpy.savetxt('concat_data.txt', concat_data, fmt='%.18e') ################################### 4 num_train_examp = 0.9 x_train, x_test = make_train_and_test_concat_data(concat_data, num_train_examp) ################################### 5 critical_times_set = find_critical_times(rr_data39, rr_data40, rr_data41,
'/Users/Apple/Desktop/first_chain_code_results/9_ses_set2_10run/rr_data32.txt' ) rr_data33 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set2_10run/rr_data33.txt' ) rr_data34 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set2_10run/rr_data34.txt' ) rr_data35 = numpy.loadtxt( '/Users/Apple/Desktop/first_chain_code_results/9_ses_set2_10run/rr_data35.txt' ) ######################################### 3 concat_data = concatenate_func(rr_data27, rr_data28, rr_data29, rr_data30, rr_data31, rr_data32, rr_data33, rr_data34, rr_data35) print(concat_data.shape) file = open('concat_data.txt', "w") numpy.savetxt('concat_data.txt', concat_data, fmt='%.18e') ##3temp target_voxel_ind = 3122 my_theta_mean = numpy.loadtxt( "/Users/Apple/Desktop/first_chain_code_results/9_ses_set2_10run/zero_initialize-random_train_examp/my_theta_mean.txt" ) c_back0 = numpy.zeros(concat_data.shape) c_back0 = concat_data