def main(): from complex_systems.dygraph import DyGraph from complex_systems.pgg import PublicGoodGames from complex_systems.quasi_unit_disk_graph import gen_quasi_unit_disk_weight from complex_systems.quasi_unit_disk_graph import remove_edges_from_graph import networkx as nx import pylab as plt outer_radius = 75 inner_radius = 40 alpha_quasi_unit_disk = 0.9 synergy = 8 coop_ratio = 0.5 noise_var = 1 nb_node = 400 time_step = 5.0 G = DyGraph(time_stop=2000.0, time_step=time_step) G.generate_mobility_levy_walk( alpha=0.9, beta=0.9, size_max=1000, f_min=10, f_max=1000, s_min=5, s_max=1000.0, b_c=2, radius=200.0, nb_node=nb_node, ) first_run = True resultats = [] for g in G: g = gen_quasi_unit_disk_weight(G=g, outer_radius=outer_radius, inner_radius=inner_radius, alpha=alpha_quasi_unit_disk) g = remove_edges_from_graph(g) if first_run == True: PGG = PublicGoodGames(G=g, synergy=synergy, cooperator_ratio=coop_ratio, noise_var=noise_var) nb_coop = PGG.run_game(time_step) resultats.append(nb_coop) strategies = PGG.get_strategies() first_run = False else: PGG = PublicGoodGames(G=g, synergy=synergy, cooperator_ratio=coop_ratio, noise_var=noise_var) PGG.set_strategies(strategies) nb_coop = PGG.run_game(time_step) strategies = PGG.get_strategies() resultats.append(nb_coop) plt.figure() plt.plot(resultats, '-o') plt.show()
def run_simu(parameters, synergy): import numpy as np import networkx as nx from complex_systems.dygraph import DyGraph from complex_systems.pgg import PublicGoodGames from complex_systems.quasi_unit_disk_graph import gen_quasi_unit_disk_weight from complex_systems.quasi_unit_disk_graph import remove_edges_from_graph number_of_node = parameters['number_of_node'] size_of_simulation_area = parameters['size_of_simulation_area'] outer_radius = parameters['outer_radius'] inner_radius = parameters['inner_radius'] alpha_quasi_unit_disk = parameters['alpha_quasi_unit_disk'] coop_ratio = parameters['initial_cooperator_ratio'] simulation_length = parameters['simulation_length'] sampling_interval = parameters['sampling_interval'] alpha_levy = parameters['alpha_levy'] noise_var = parameters['noise_variance'] beta = parameters['beta'] f_min = parameters['f_min'] f_max = parameters['f_max'] s_min = parameters['s_min'] s_max = parameters['s_max'] velocity = parameters['velocity'] G = DyGraph(time_stop=simulation_length, time_step=sampling_interval) G.generate_mobility_levy_walk( alpha=alpha_levy, beta=beta, size_max=size_of_simulation_area, f_min=f_min, f_max=f_max, s_min=s_min, s_max=s_max, b_c=2, radius=outer_radius, nb_node=number_of_node, velocity=velocity, ) first_run = True resultats = [] for g in G: g = gen_quasi_unit_disk_weight(G=g, outer_radius=outer_radius, inner_radius=inner_radius, alpha=alpha_quasi_unit_disk) g = remove_edges_from_graph(g) if first_run == True: PGG = PublicGoodGames(G=g, synergy=synergy, cooperator_ratio=coop_ratio, noise_var=noise_var) nb_coop = PGG.run_game(sampling_interval) resultats.append(nb_coop) strategies = PGG.get_strategies() first_run = False else: PGG = PublicGoodGames(G=g, synergy=synergy, cooperator_ratio=coop_ratio, noise_var=noise_var) PGG.set_strategies(strategies) nb_coop = PGG.run_game(sampling_interval) strategies = PGG.get_strategies() resultats.append(nb_coop) return (synergy, nb_coop, np.mean(G.avg_degree()))