def make_sector_fig(df, name, metadata): fig = PredictionFigure( sector_name=name, unit_name='kt', title=metadata['name'], smoothing=True, # allow_nonconsecutive_years=True, fill=True, stacked=True, ) if len(df.columns) == 2: fig.add_series(df=df, trace_name='Päästöt', column_name='') else: fig.legend = True fig.legend_x = 0.8 column_names = list(df.columns) column_names.remove('Forecast') colors = generate_color_scale(metadata['color'], len(column_names)) for idx, col_name in enumerate(column_names): subsector = metadata['subsectors'][col_name] fig.add_series(df=df, trace_name=subsector['name'], column_name=col_name, historical_color=colors[idx]) return fig.get_figure()
def make_sector_fig(self, df, name, metadata, base_color): lang = get_active_locale() fig = PredictionFigure( sector_name=name, unit_name='kt', title=metadata.get('name_%s' % lang, metadata['name']), smoothing=True, # allow_nonconsecutive_years=True, fill=True, stacked=True, ) if len(df.columns) == 2: fig.add_series(df=df, trace_name=_('Emissions'), column_name='', historical_color=base_color) else: fig.legend = True fig.legend_x = 0.8 column_names = list(df.columns) column_names.remove('Forecast') colors = generate_color_scale(base_color, len(column_names)) for idx, col_name in enumerate(column_names): subsector = metadata['subsectors'][col_name] fig.add_series(df=df, trace_name=subsector.get( 'name_%s' % lang, metadata['name']), column_name=col_name, historical_color=colors[idx]) return fig.get_figure()