def main(): database = 'test.db' # create database connection conn = create_connection(database) # Create desktop results view view_desktop_results_sql = 'sql/view_desktop_results.sql' create_view(conn, view_desktop_results_sql) # Create transect review view view_transect_sql = 'sql/view_transect_data.sql' create_view(conn, view_transect_sql) # Create site scale values view view_map_unit_sql = 'sql/view_site_scale_values.sql' create_view(conn, view_map_unit_sql) # Create reserve account view view_reserve_account_sql = 'sql/view_reserve_account.sql' create_view(conn, view_reserve_account_sql) # Create baseline view view_baseline_sql = 'sql/view_baseline.sql' create_view(conn, view_baseline_sql) conn.close()
def main(): database = 'test.db' # create a database connection conn = create_connection(database) # create tables if conn is not None: # Create list of table files tables = [ table for table in os.listdir('sql') if table.startswith('create_table') ] # Create each table from list for table in tables: print(f'Running {table}') with open(os.path.join('sql', table), 'r') as sql_file: sql = sql_file.read() create_table(conn, sql) conn.close() else: print("Error! failed to create database connection.")
def main(): database = 'test.db' policy_tables_folder = 'data/policy-tables/' # create database connection conn = create_connection(database) # read in tables start = time.time() print('reading policy tables at ' + policy_tables_folder) for table in os.listdir(policy_tables_folder): # read in table table_path = os.path.join(policy_tables_folder, table) df = pd.read_csv(table_path) # read in sql file sql_file_name = 'insert_' + table[:-4].replace('-', '_') + '.sql' sql_file_path = os.path.join('sql/', sql_file_name) # insert data into database with conn: print('inserting ' + table[:-4].replace('-', '_')) for _, row in df.iterrows(): data = tuple(row) insert_data(conn, sql_file_path, data) conn.close() print(f'{round((time.time() - start), 2)} seconds elapsed')
def create_views(database_path): database = database_path # create database connection conn = create_connection(database) # Create desktop results view AddMessage('creating desktop results view') view_desktop_results_sql = os.path.join(sql_dir, 'view_desktop_results.sql') create_view(conn, view_desktop_results_sql) # Create transect review view AddMessage('creating transects review') view_transect_sql = os.path.join(sql_dir, 'view_transect_data.sql') create_view(conn, view_transect_sql) # Create site scale values view view_map_unit_sql = os.path.join(sql_dir, 'view_site_scale_values.sql') create_view(conn, view_map_unit_sql) # Create reserve account view view_reserve_account_sql = os.path.join(sql_dir, 'view_reserve_account.sql') create_view(conn, view_reserve_account_sql) # Create baseline view view_baseline_sql = os.path.join(sql_dir, 'view_baseline.sql') create_view(conn, view_baseline_sql) conn.close()
def import_policy_tables(database_path, policy_tables_path): database = database_path policy_tables_folder = policy_tables_path # create database connection conn = create_connection(database) # read in tables start = time.time() AddMessage('reading policy tables at ' + policy_tables_folder) for table in os.listdir(policy_tables_folder): # read in table table_path = os.path.join(policy_tables_folder, table) df = pd.read_csv(table_path) # read in sql file sql_file_name = 'insert_' + table[:-4].replace('-', '_') + '.sql' sql_file_path = os.path.join(sql_dir, sql_file_name) # insert data into database with conn: AddMessage('inserting ' + table[:-4].replace('-', '_')) for _, row in df.iterrows(): data = tuple(row) insert_data(conn, sql_file_path, data) conn.close() AddMessage('{} seconds elapsed'.format(round((time.time() - start), 2)))
def create_database(database_path): # create a database connection conn = create_connection(database_path) # create tables if conn is not None: # Create list of table files tables = [table for table in os.listdir(sql_dir) if table.startswith('create_table')] # Create each table from list for table in tables: AddMessage('Running {}'.format(table)) with open (os.path.join(sql_dir, table), 'r') as sql_file: sql = sql_file.read() create_table(conn, sql) conn.close() else: AddMessage ("Error! failed to create database connection.")
def main(): database = 'test.db' # create database connection conn = create_connection(database) # instantiate credit calculator object credit_calc_file = 'data/external/Credit_Project_Calculator_v1_6_Beta_FIXED_Crawford.xlsm' project_calc = CreditCalculator(credit_calc_file) # read in tables start = time.time() print('reading calculator at ' + credit_calc_file) map_units_df = project_calc.map_units_df current_ls_df = project_calc.current_ls_df projected_ls_df = project_calc.projected_ls_df transects_data_df = project_calc.transects_data_df mgmt_cats_df = project_calc.mgmt_cats_df wmz_df = project_calc.wmz_df pmu_df = project_calc.pmu_df precip_df = project_calc.precip_df desktop_results_df = project_calc.desktop_results_df # field_sheets_df = project_calc.field_sheets_df field_info_df = project_calc.field_info_df shrubs_df = project_calc.shrubs_df # plot_df called for each plot when reading in data forb_grass_df = project_calc.forb_grass_df transects_review_df = project_calc.transects_review_df site_scale_values_df = project_calc.site_scale_values_df site_scale_scores_df = project_calc.site_scale_scores_df projected_values_df = project_calc.projected_values_df projected_scores_df = project_calc.projected_scores_df baseline_rr_inputs_df = project_calc.baseline_rr_inputs_df baseline_rr_df = project_calc.baseline_rr_df baseline_credits_df = project_calc.baseline_credits_df current_credits_df = project_calc.current_credits_df projected_credits_df = project_calc.projected_credits_df print(f'{round((time.time() - start)/60, 2)} minutes elapsed') # read in sql files print('reading sql files') map_units_sql = 'sql/insert_map_units.sql' current_ls_sql = 'sql/insert_current_ls.sql' projected_ls_sql = 'sql/insert_projected_ls.sql' transect_data_sql = 'sql/insert_transect_data.sql' mgmt_cats_sql = 'sql/insert_project_mgmt_cats.sql' project_wmz_sql = 'sql/insert_project_wmz.sql' project_pmu_sql = 'sql/insert_project_pmu.sql' project_precip_sql = 'sql/insert_project_precip.sql' desktop_results_sql = 'sql/insert_desktop_results.sql' # field_sheets_sql = 'sql/insert_field_sheets.sql' field_info_sql = 'sql/insert_field_info.sql' shrubs_sql = 'sql/insert_shrub_data.sql' plots_sql = 'sql/insert_plot_data.sql' forb_grass_sql = 'sql/insert_forb_grass_data.sql' transects_review_sql = 'sql/insert_transect_review.sql' site_scale_values_sql = 'sql/insert_site_scale_values.sql' site_scale_scores_sql = 'sql/insert_site_scale_scores.sql' projected_values_sql = 'sql/insert_projected_values.sql' projected_scores_sql = 'sql/insert_projected_scores.sql' baseline_rr_inputs_sql = 'sql/insert_baseline_rr_inputs.sql' baseline_rr_sql = 'sql/insert_baseline_rr.sql' baseline_credits_sql = 'sql/insert_baseline_credits.sql' current_credits_sql = 'sql/insert_current_credits.sql' projected_credits_sql = 'sql/insert_projected_credits.sql' # plot cols (for reading in plot data) plot_cols = { 1: 'C:D, E:G', 2: 'C:D, H:J', 3: 'C:D, K:M', 4: 'C:D, N:P', 5: 'C:D, Q:S' } # insert data into database with conn: print('inserting map units') for _, map_unit in map_units_df.iterrows(): data = tuple(map_unit) insert_data(conn, map_units_sql, data) print('inserting current local-scale') for _, current_ls in current_ls_df.iterrows(): data = tuple(current_ls) insert_data(conn, current_ls_sql, data) print('inserting projected local-scale') for _, projected_ls in projected_ls_df.iterrows(): data = tuple(projected_ls) insert_data(conn, projected_ls_sql, data) print('inserting transect data') for _, transect in transects_data_df.iterrows(): data = tuple(transect) insert_data(conn, transect_data_sql, data) print('inserting mgmt cats') for _, mgmt_cat in mgmt_cats_df.iterrows(): data = tuple(mgmt_cat) insert_data(conn, mgmt_cats_sql, data) print('inserting wmz') for _, wmz in wmz_df.iterrows(): data = tuple(wmz) insert_data(conn, project_wmz_sql, data) print('inserting pmu') for _, pmu in pmu_df.iterrows(): data = tuple(pmu) insert_data(conn, project_pmu_sql, data) print('inserting precip') for _, precip in precip_df.iterrows(): data = tuple(precip) insert_data(conn, project_precip_sql, data) print('inserting desktop results') for _, desktop_result in desktop_results_df.iterrows(): data = tuple(desktop_result) insert_data(conn, desktop_results_sql, data) # for _, field_sheet in field_sheets_df.iterrows(): # data = tuple(field_sheet) # insert_data(conn, field_sheets_sql, data) print('inserting field info') for _, field_info in field_info_df.iterrows(): data = tuple(field_info) insert_data(conn, field_info_sql, data) print('inserting shrubs') for _, shrub in shrubs_df.iterrows(): data = tuple(shrub) insert_data(conn, shrubs_sql, data) print('inserting plots') for plot_no in plot_cols: plot_df = project_calc.plot_df(plot_cols.get(plot_no)) for _, plot in plot_df.iterrows(): data = (plot_no, ) + tuple(plot) insert_data(conn, plots_sql, data) print('inserting forbs and grasses') for _, forb_grass in forb_grass_df.iterrows(): data = tuple(forb_grass) insert_data(conn, forb_grass_sql, data) print('inserting transect review') for _, transect_data in transects_review_df.iterrows(): data = tuple(transect_data) insert_data(conn, transects_review_sql, data) print('inserting site scale values') for _, site_scale_value in site_scale_values_df.iterrows(): data = tuple(site_scale_value) insert_data(conn, site_scale_values_sql, data) print('inserting site scale scores') for _, site_scale_score in site_scale_scores_df.iterrows(): data = tuple(site_scale_score) insert_data(conn, site_scale_scores_sql, data) print('inserting projected values') for _, projected_value in projected_values_df.iterrows(): data = tuple(projected_value) insert_data(conn, projected_values_sql, data) print('inserting projected scores') for _, projected_score in projected_scores_df.iterrows(): data = tuple(projected_score) insert_data(conn, projected_scores_sql, data) print('inserting baseline and rr inputs') for _, baseline_rr_input in baseline_rr_inputs_df.iterrows(): data = tuple(baseline_rr_input) insert_data(conn, baseline_rr_inputs_sql, data) print('inserting baseline and rr scores') for _, baseline_rr in baseline_rr_df.iterrows(): data = tuple(baseline_rr) insert_data(conn, baseline_rr_sql, data) print('inserting baseline credits') for _, baseline_credit in baseline_credits_df.iterrows(): data = tuple(baseline_credit) insert_data(conn, baseline_credits_sql, data) print('inserting current credits') for _, current_credit in current_credits_df.iterrows(): data = tuple(current_credit) insert_data(conn, current_credits_sql, data) print('inserting projected credits') for _, projected_credit in projected_credits_df.iterrows(): data = tuple(projected_credit) insert_data(conn, projected_credits_sql, data) print(f'{round((time.time() - start)/60, 2)} minutes elapsed') # USING FOREIGN KEYS # with conn: # # Locate sql instruction files # m_sql_file = 'sql/insert_desktop_result.sql' # t_sql_file = 'sql/insert_transect.sql' # f_sql_file = 'sql/insert_field_info.sql' # # Insert map unit # print('Inserting map units') # for _, m_data in desktop_results_df.iterrows(): # map_unit = list(m_data) # map_unit_id = map_unit[0] # map_unit_key = insert_data(conn, m_sql_file, map_unit) # # Insert associated transects # print(f'Inserting transects for map unit {map_unit_id}') # transects = transects_data_df[transects_data_df[1] == map_unit_id] # for _, t_data in transects.iterrows(): # transect = list(t_data) # transect_id = transect[2] # # Update the transect with the map_unit_key # transect += (map_unit_key,) # transect_key = insert_data(conn, t_sql_file, transect) # # Insert associated field info (requires one:one relationship) # field_info = field_info_df[field_info_df[3] == transect_id].to_numpy().tolist()[0] # # Update the field info with transect_key # field_info += (transect_key,) # insert_data(conn, f_sql_file, field_info) conn.close()
def __init__(self, db): self.db = db self.conn = create_connection(self.db)
# User-defined inputs projected_values_input = None output_suffix = '' if projected_values_input: projected_values = pd.read_csv(projected_values_input) # Constants BREEDING_TRIGGER = 0.3 # Database tables database = 'test.db' conn = create_connection(database) desktop_results = pd.read_sql_query("""SELECT * FROM view_desktop_results""", conn) site_scale_values = pd.read_sql_query( """SELECT * FROM view_site_scale_values""", conn) scoring_curves = pd.read_sql_query("""SELECT * FROM scoring_curves_v100""", conn, index_col='attr_value') scoring_weights = pd.read_sql_query("""SELECT * FROM scoring_weights""", conn, index_col=['season', 'attribute'])