def testIntegrationPartGaussianWithAlpha(self): sigma_matrix = SigmaMatrixFromCovariance(xx=3e-6, yy=1e-6, xxp=5e-6, yyp=4e-6, xpxp=0.5*3e-6, ypyp=0.5*1e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) for dx in x_coordinates: dr = np.array([dx, 0.0]) for x in x_coordinates: diff = density.integrationPartOscillation(delta_r=dr, x=x, y=0.0) print(2*wavenumber* dr[0] * (sigma_matrix.element('x','xp')/sigma_matrix.element('xp','xp'))*x) diff -= np.exp(2j*wavenumber* dr[0] * (sigma_matrix.element('x','xp')/sigma_matrix.element('xp','xp'))*x) self.assertLess(np.abs(diff), 1e-12) for dy in y_coordinates: dr = np.array([0.0, dy]) for y in y_coordinates: diff = density.integrationPartOscillation(delta_r=dr, x=0.0, y=y) diff -= np.exp(2j*wavenumber* dr[1] * (sigma_matrix.element('y','yp')/sigma_matrix.element('yp','yp'))*y) self.assertLess(np.abs(diff), 1e-12)
def __init__(self, N_e, sigma_matrix, weighted_fields, x_coordinates, y_coordinates, k, strategy=None): self._N_e = N_e self._sigma_matrix = sigma_matrix self._density = PhaseSpaceDensity(sigma_matrix, k) self._weighted_fields = weighted_fields.copy() self._field_x_coordinates = x_coordinates.copy() self._field_y_coordinates = y_coordinates.copy() self._x_coordinates = x_coordinates.copy( ) # self._minkowskiSum(x_coordinates) self._y_coordinates = y_coordinates.copy( ) # self._minkowskiSum(y_coordinates) if strategy is None: if self._density.isAlphaZero(): strategy = BuilderStrategyConvolution else: log("Found alpha not equal to zero. Can not use convolutions.") strategy = BuilderStrategyPython self.setStrategy(strategy) self.setAllCoordinates(self._field_x_coordinates, self._field_y_coordinates) self.setDoNotUseConvolutions(False)
def testIntegrationPartGaussian(self): sigma_x = 3e-6 sigma_y = 1e-6 sigma_matrix = SigmaWaist(sigma_x=sigma_x, sigma_y=sigma_y, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-15e-6, 15e-6, 200) y_coordinates = np.linspace(-7e-6, 7e-6, 200) for dx in x_coordinates: diff = density.integrationPartGaussian(delta=0.0, z=0.0, x=dx, y=0.0) - np.exp(-dx**2/(2*sigma_matrix.sigma_x()**2)) self.assertLess(diff, 1e-12) for dy in y_coordinates: diff = density.integrationPartGaussian(delta=0.0, z=0.0, x=0.0, y=dy) - np.exp(-dy**2/(2*sigma_matrix.sigma_y()**2)) self.assertLess(diff, 1e-12) rho = np.zeros((x_coordinates.size, y_coordinates.size), dtype=np.complex128) for i_x, dx in enumerate(x_coordinates): for i_y, dy in enumerate(y_coordinates): rho[i_x, i_y] = density.integrationPartGaussian(delta=0.0, z=0.0, x=dx, y=dy) norm_1 = np.trapz(np.trapz(np.abs(rho), y_coordinates), x_coordinates) self.assertLess(1-norm_1/(2*np.pi*sigma_x*sigma_y), 1e-6)
def testCalculateRhoPhase(self): sigma_matrix = SigmaWaist(sigma_x=3e-6, sigma_y=1e-6, sigma_x_prime=5e-6, sigma_y_prime=5e-6) x_coordinates = np.linspace(-1e-5, 1e-5, 50) y_coordinates = np.linspace(-1e-5, 1e-5, 50) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) e_field = createGaussian2D(sigma_x=1.0e-6, sigma_y=1.0e-6, x_coordinates=x_coordinates, y_coordinates=y_coordinates) e_field = e_field + 0j strategy = BuilderStrategyPython(x_coordinates, y_coordinates, density, x_coordinates, y_coordinates, e_field[np.newaxis, :, :]) for x in x_coordinates[::5]: for y in y_coordinates[::2]: norm_diff = np.linalg.norm( strategy.calculateRhoPhase((x, y)) - strategy.calculateRhoPhaseSlow((x, y))) self.assertLess(norm_diff, 1e-10)
def testStaticPartFixedR1(self): sigma_matrix = SigmaWaist(sigma_x=3e-6, sigma_y=1e-6, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) r_1 = np.array([0.0, 0.0]) density.setAllStaticPartCoordinates(x_coordinates, y_coordinates) values = density.staticPartFixedR1(r_1) for i_x, x in enumerate(x_coordinates): for i_y, y in enumerate(y_coordinates): dr = r_1 - np.array([x, y]) diff = np.abs(1- values[i_x, i_y] / density.staticPart(dr)) self.assertLess(diff, 1e-12)
def testIntegrationPartGaussianWithAlpha(self): sigma_matrix = SigmaMatrixFromCovariance(xx=3e-6, yy=1e-6, xxp=5e-6, yyp=4e-6, xpxp=0.5 * 3e-6, ypyp=0.5 * 1e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) for dx in x_coordinates: dr = np.array([dx, 0.0]) for x in x_coordinates: diff = density.integrationPartOscillation(delta_r=dr, x=x, y=0.0) print(2 * wavenumber * dr[0] * (sigma_matrix.element('x', 'xp') / sigma_matrix.element('xp', 'xp')) * x) diff -= np.exp(2j * wavenumber * dr[0] * (sigma_matrix.element('x', 'xp') / sigma_matrix.element('xp', 'xp')) * x) self.assertLess(np.abs(diff), 1e-12) for dy in y_coordinates: dr = np.array([0.0, dy]) for y in y_coordinates: diff = density.integrationPartOscillation(delta_r=dr, x=0.0, y=y) diff -= np.exp(2j * wavenumber * dr[1] * (sigma_matrix.element('y', 'yp') / sigma_matrix.element('yp', 'yp')) * y) self.assertLess(np.abs(diff), 1e-12)
def testIntegrationPartGaussian(self): sigma_x = 3e-6 sigma_y = 1e-6 sigma_matrix = SigmaWaist(sigma_x=sigma_x, sigma_y=sigma_y, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-15e-6, 15e-6, 200) y_coordinates = np.linspace(-7e-6, 7e-6, 200) for dx in x_coordinates: diff = density.integrationPartGaussian( delta=0.0, z=0.0, x=dx, y=0.0) - np.exp( -dx**2 / (2 * sigma_matrix.sigma_x()**2)) self.assertLess(diff, 1e-12) for dy in y_coordinates: diff = density.integrationPartGaussian( delta=0.0, z=0.0, x=0.0, y=dy) - np.exp( -dy**2 / (2 * sigma_matrix.sigma_y()**2)) self.assertLess(diff, 1e-12) rho = np.zeros((x_coordinates.size, y_coordinates.size), dtype=np.complex128) for i_x, dx in enumerate(x_coordinates): for i_y, dy in enumerate(y_coordinates): rho[i_x, i_y] = density.integrationPartGaussian(delta=0.0, z=0.0, x=dx, y=dy) norm_1 = np.trapz(np.trapz(np.abs(rho), y_coordinates), x_coordinates) self.assertLess(1 - norm_1 / (2 * np.pi * sigma_x * sigma_y), 1e-6)
def testStaticElectronDensity(self): sigma_x = 3e-6 sigma_y = 1e-6 sigma_matrix = SigmaWaist(sigma_x=sigma_x, sigma_y=sigma_y, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) prefactor = 1.0 / (2 * np.pi * sigma_matrix.sigma_x()**2 * sigma_matrix.sigma_y()**2 * sigma_matrix.sigma_d()**2) #TODO prefactor not correct! prefactor = density.staticPart(np.array([0,0])) diff_prefactor = prefactor / density.staticPart(np.array([0,0])) self.assertLess(np.abs(1-diff_prefactor), 1e-12) dy = 0.0 for dx in x_coordinates: dr = np.array([dx, dy]) diff = density.staticPart(delta_r=dr) / \ (prefactor * np.exp(-(dx-dy)**2 * (0.5*wavenumber**2*sigma_matrix.sigma_x_prime()**2))) self.assertLess(np.abs(1-diff), 1e-12) dx = 0.0 for dy in y_coordinates: dr = np.array([dx, dy]) diff = density.staticPart(delta_r=dr) / \ (prefactor * np.exp(-(dx-dy)**2 * (0.5*wavenumber**2*sigma_matrix.sigma_y_prime()**2))) self.assertLess(np.abs(1-diff), 1e-12)
def testStaticPartFixedR1(self): sigma_matrix = SigmaWaist(sigma_x=3e-6, sigma_y=1e-6, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) r_1 = np.array([0.0, 0.0]) density.setAllStaticPartCoordinates(x_coordinates, y_coordinates) values = density.staticPartFixedR1(r_1) for i_x, x in enumerate(x_coordinates): for i_y, y in enumerate(y_coordinates): dr = r_1 - np.array([x, y]) diff = np.abs(1 - values[i_x, i_y] / density.staticPart(dr)) self.assertLess(diff, 1e-12)
def testStaticElectronDensity(self): sigma_x = 3e-6 sigma_y = 1e-6 sigma_matrix = SigmaWaist(sigma_x=sigma_x, sigma_y=sigma_y, sigma_x_prime=5e-6, sigma_y_prime=4e-6) wavenumber = 1e+11 density = PhaseSpaceDensity(sigma_matrix, wavenumber) x_coordinates = np.linspace(-10e-6, 10e-6, 100) y_coordinates = np.linspace(-10e-6, 10e-6, 100) prefactor = 1.0 / (2 * np.pi * sigma_matrix.sigma_x()**2 * sigma_matrix.sigma_y()**2 * sigma_matrix.sigma_d()**2) #TODO prefactor not correct! prefactor = density.staticPart(np.array([0, 0])) diff_prefactor = prefactor / density.staticPart(np.array([0, 0])) self.assertLess(np.abs(1 - diff_prefactor), 1e-12) dy = 0.0 for dx in x_coordinates: dr = np.array([dx, dy]) diff = density.staticPart(delta_r=dr) / \ (prefactor * np.exp(-(dx-dy)**2 * (0.5*wavenumber**2*sigma_matrix.sigma_x_prime()**2))) self.assertLess(np.abs(1 - diff), 1e-12) dx = 0.0 for dy in y_coordinates: dr = np.array([dx, dy]) diff = density.staticPart(delta_r=dr) / \ (prefactor * np.exp(-(dx-dy)**2 * (0.5*wavenumber**2*sigma_matrix.sigma_y_prime()**2))) self.assertLess(np.abs(1 - diff), 1e-12)
def calculateAutocorrelation(self, electron_beam, undulator, info): configuration = self.configuration() # electron_beam = ElectronBeam(energy_in_GeV=6.04, # energy_spread=0, # average_current=0.2000, # electrons=1) sigma_matrix = SigmaMatrixFromCovariance( xx=electron_beam._moment_xx, xxp=electron_beam._moment_xxp, xpxp=electron_beam._moment_xpxp, yy=electron_beam._moment_yy, yyp=electron_beam._moment_yyp, ypyp=electron_beam._moment_ypyp, sigma_dd=electron_beam._energy_spread, ) resonance_energy = int( undulator.resonance_energy(electron_beam.gamma(), 0, 0)) energy = resonance_energy * configuration.detuningParameter() if configuration.virtualSourcePosition() == "": if sigma_matrix.isAlphaZero(): source_position = VIRTUAL_SOURCE_CENTER else: source_position = VIRTUAL_SOURCE_ENTRANCE else: source_position = configuration.virtualSourcePosition() wavefront_builder = WavefrontBuilder( undulator=undulator, sampling_factor=configuration.samplingFactor(), min_dimension_x=configuration. exitSlitWavefrontMinimalSizeHorizontal(), max_dimension_x=configuration. exitSlitWavefrontMaximalSizeHorizontal(), min_dimension_y=configuration.exitSlitWavefrontMinimalSizeVertical( ), max_dimension_y=configuration.exitSlitWavefrontMaximalSizeVertical( ), energy=energy, source_position=source_position) # from comsyl.waveoptics.WavefrontBuilderPySRU import WavefrontBuilderPySRU # wavefront_builder = WavefrontBuilderPySRU(undulator=undulator, # sampling_factor=configuration.samplingFactor(), # min_dimension_x=configuration.exitSlitWavefrontMinimalSizeHorizontal(), # max_dimension_x=configuration.exitSlitWavefrontMaximalSizeHorizontal(), # min_dimension_y=configuration.exitSlitWavefrontMinimalSizeVertical(), # max_dimension_y=configuration.exitSlitWavefrontMaximalSizeVertical(), # energy=energy) info.setSourcePosition(source_position) e_0, sigma_e, beam_energies = self._determineBeamEnergies( electron_beam, sigma_matrix, configuration.beamEnergies()) # determineZ(electron_beam, wavefront_builder, sigma_matrix.sigma_x(), sigma_matrix.sigma_x_prime(), # sigma_matrix.sigma_y(), sigma_matrix.sigma_y_prime()) sorted_beam_energies = beam_energies[np.abs(beam_energies).argsort()] field_x_coordinates = None field_y_coordinates = None exit_slit_wavefront = None first_wavefront = None weighted_fields = None for i_beam_energy, beam_energy in enumerate(sorted_beam_energies): # TDOO: recheck normalization, especially for delta coupled beams. if len(sorted_beam_energies) > 1: stepwidth_beam = np.diff(beam_energies)[0] weight = (1 / (2 * np.pi * sigma_e**2)**0.5) * np.exp( -beam_energy**2 / (2 * sigma_e**2)) * stepwidth_beam else: weight = 1.0 electron_beam._energy = e_0 + beam_energy log("%i/%i: doing energy: %e with weight %e" % (i_beam_energy + 1, len(beam_energies), electron_beam.energy(), weight)) # Prepare e_field if field_x_coordinates is None or field_y_coordinates is None: wavefront = wavefront_builder.build(electron_beam, xp=0.0, yp=0.0, z_offset=0.0) reference_wavefront = wavefront.toNumpyWavefront() else: wavefront = wavefront_builder.buildOnGrid(reference_wavefront, electron_beam, xp=0.0, yp=0.0, z_offset=0.0) try: Rx, dRx, Ry, dRy = wavefront.instantRadii() except AttributeError: Rx, dRx, Ry, dRy = 0, 0, 0, 0 energy = wavefront.energies()[0] wavefront = wavefront.toNumpyWavefront() if exit_slit_wavefront is None: exit_slit_wavefront = wavefront.clone() wavefront = wavefront_builder.createReferenceWavefrontAtVirtualSource( Rx, dRx, Ry, dRy, configuration, source_position, wavefront) if self.configuration().useGaussianWavefront() == "true": gaussian_wavefront_builder = GaussianWavefrontBuilder() wavefront = gaussian_wavefront_builder.fromWavefront( wavefront, info) if field_x_coordinates is None or field_y_coordinates is None: wavefront = wavefront.asCenteredGrid(resample_x=1.0, resample_y=1.0) field_x_coordinates = np.array( wavefront.absolute_x_coordinates()) field_y_coordinates = np.array( wavefront.absolute_y_coordinates()) else: wavefront = wavefront.asCenteredGrid(field_x_coordinates, field_y_coordinates) size_matrix = self._estimateMemoryConsumption(wavefront) if self.adjustMemoryConsumption(): self._performMemoryConsumptionAdjustment( sigma_matrix, undulator, info, size_matrix) exit(0) if first_wavefront is None: first_wavefront = wavefront.clone() if weighted_fields is None: weighted_fields = np.zeros( (len(sorted_beam_energies), len(field_x_coordinates), len(field_y_coordinates)), dtype=np.complex128) weighted_fields[i_beam_energy, :, :] = np.sqrt( weight) * wavefront.E_field_as_numpy()[0, :, :, 0].copy() log("Broadcasting electrical fields") weighted_fields = mpi.COMM_WORLD.bcast(weighted_fields, root=0) static_electron_density, work_matrix = self.calculateAutocorrelationForEnergy( wavefront, weighted_fields, sigma_matrix) electron_beam._energy = e_0 if isinstance(work_matrix, AutocorrelationOperator): log("Setting up eigenmoder") eigenmoder = Eigenmoder(field_x_coordinates, field_y_coordinates) log("Starting eigenmoder") eigenvalues_spatial, eigenvectors_parallel = eigenmoder.eigenmodes( work_matrix, work_matrix.numberModes(), do_not_gather=True) if isMaster(): total_spatial_mode_intensity = eigenvalues_spatial.sum( ) * work_matrix._builder._density.normalizationConstant( ) / np.trapz( np.trapz(work_matrix.trace(), field_y_coordinates), field_x_coordinates) info.setTotalSpatialModeIntensity(total_spatial_mode_intensity) log("Total spatial mode intensity: %e" % total_spatial_mode_intensity.real) if configuration.twoStepDivergenceMethod() == "": divergence_method = "accurate" else: divergence_method = configuration.twoStepDivergenceMethod() divergence_action = DivergenceAction( x_coordinates=field_x_coordinates, y_coordinates=field_y_coordinates, intensity=work_matrix.trace(), eigenvalues_spatial=eigenvalues_spatial, eigenvectors_parallel=eigenvectors_parallel, phase_space_density=PhaseSpaceDensity( sigma_matrix, wavefront.wavenumbers()[0]), method=divergence_method) twoform = divergence_action.apply( number_modes=configuration.numberModes()) elif isinstance(work_matrix, Twoform): twoform = work_matrix else: eigenmoder = Eigenmoder(field_x_coordinates, field_y_coordinates) twoform = eigenmoder.eigenmodes(work_matrix, configuration.numberModes()) total_beam_energies = e_0 + beam_energies info.setEndTime() autocorrelation_function = AutocorrelationFunction( sigma_matrix=sigma_matrix, undulator=undulator, detuning_parameter=configuration.detuningParameter(), energy=energy, electron_beam_energy=electron_beam.energy(), wavefront=first_wavefront, exit_slit_wavefront=exit_slit_wavefront, srw_wavefront_rx=Rx, srw_wavefront_drx=dRx, srw_wavefront_ry=Ry, srw_wavefront_dry=dRy, sampling_factor=configuration.samplingFactor(), minimal_size=configuration.exitSlitWavefrontMinimalSizeVertical(), beam_energies=total_beam_energies, weighted_fields=weighted_fields, static_electron_density=static_electron_density, twoform=twoform, info=info) return autocorrelation_function
class AutocorrelationBuilder(object): def __init__(self, N_e, sigma_matrix, weighted_fields, x_coordinates, y_coordinates, k, strategy=None): self._N_e = N_e self._sigma_matrix = sigma_matrix self._density = PhaseSpaceDensity(sigma_matrix, k) self._weighted_fields = weighted_fields.copy() self._field_x_coordinates = x_coordinates.copy() self._field_y_coordinates = y_coordinates.copy() self._x_coordinates = x_coordinates.copy( ) # self._minkowskiSum(x_coordinates) self._y_coordinates = y_coordinates.copy( ) # self._minkowskiSum(y_coordinates) if strategy is None: if self._density.isAlphaZero(): strategy = BuilderStrategyConvolution else: log("Found alpha not equal to zero. Can not use convolutions.") strategy = BuilderStrategyPython self.setStrategy(strategy) self.setAllCoordinates(self._field_x_coordinates, self._field_y_coordinates) self.setDoNotUseConvolutions(False) def setStrategy(self, strategy): log("Setting autocorrelation strategy: %s" % str(strategy.__name__)) self._strategy = strategy(self._x_coordinates, self._y_coordinates, self._density, self._field_x_coordinates, self._field_y_coordinates, self._weighted_fields) def _minkowskiSum(self, coordinates): delta_coordinate = coordinates[1] - coordinates[0] interval = delta_coordinate * coordinates.shape[0] mink_sum = np.linspace(-interval, interval, coordinates.shape[0] * 1) #2-1) return mink_sum def xCoordinates(self): return self._x_coordinates def yCoordinates(self): return self._y_coordinates def staticElectronDensity(self): return self._strategy._rho def setAllCoordinates(self, x_coordinates, y_coordinates): self._strategy.setAllCoordinates(x_coordinates, y_coordinates) def evaluate(self, r_1, r_2): return self._strategy.evaluate(r_1, r_2) def evaluateAllR_2(self, r_1): return self._strategy.evaluateAllR_2(r_1) def calculateIntensity(self): return self._strategy.calculateIntensity() def setDoNotUseConvolutions(self, do_not_use_convolutions): self._strategy.setDoNotUseConvolutions(do_not_use_convolutions)
def phaseSpaceDensity(self): return PhaseSpaceDensity(sigma_matrix=self._sigma_matrix, k=self._wavefront.wavenumbers()[0])