def test_cobweb_fit(): tree = CobwebTree() tree2 = CobwebTree() examples = [{'a': 'a'}, {'b': 'b'}, {'c': 'c'}] tree.fit(examples) tree2.fit(examples)
# Create dictionaries # Note that the y value is stored as a hidden variable because # in this case we only want to use the X value to make predictions. training_data = [{'X': v[0], '_y': y[i]} for i, v in enumerate(X)] shuffle(training_data) # Build test data test_data = [{'X': v[0]} for i, v in enumerate(T)] #test_data = [{'X': float(v)} for i,v in enumerate(X)] # Fit cobweb models cbt = CobwebTree() cb3t = Cobweb3Tree() cbt.fit(training_data, iterations=1) cb3t.fit(training_data, iterations=1) print(cb3t.root) child = cb3t.categorize({'X': 4.16}) print(child.predict('X')) print(child.predict('y')) curr = child print(curr) while curr.parent is not None: curr = curr.parent print(curr) # Predict test data cby = [cbt.categorize(e).predict('_y') for e in test_data]
# Create dictionaries # Note that the y value is stored as a hidden variable because # in this case we only want to use the X value to make predictions. training_data = [{'X': v[0], '_y': y[i]} for i, v in enumerate(X)] shuffle(training_data) # Build test data test_data = [{'X': v[0]} for i, v in enumerate(T)] # test_data = [{'X': float(v)} for i,v in enumerate(X)] # Fit cobweb models cbt = CobwebTree() cb3t = Cobweb3Tree() cbt.fit(training_data, iterations=1) cb3t.fit(training_data, iterations=1) print(cb3t.root) child = cb3t.categorize({'X': 4.16}) print(child.predict('X')) print(child.predict('y')) curr = child print(curr) while curr.parent is not None: curr = curr.parent print(curr) # Predict test data cby = [cbt.categorize(e).predict('_y') for e in test_data]