def skill_info(self, X): X = [X] if not isinstance(X, list) else X feature_names = self.named_steps["dict vect"].get_feature_names() classifier = self.steps[-1][-1] ft = Flattener() tup = Tuplizer() lvf = ListValueFlattener() X = lvf.transform(X) X = [tup.undo_transform(ft.transform(x)) for x in X] # X = self.named_steps["dict vect"].transform(x) # X = self._transform(X) # ft = Flattener() # tup = Tuplizer() # print("BAE1",X) # print("PEEP",feature_names) # print("BAE",[tup.transform(x) for x in X]) # print(type(self)) # X = [tup.undo_transform(ft.transform(x)) for x in X] Xt = X for name, transform in self.steps[:-1]: if transform is not None: # print("HEY",transform.get_feature_names()) Xt = transform.transform(Xt) # print("BAE_"+name,Xt) return classifier.skill_info(Xt,feature_names)
def predict(self, X): ft = Flattener() tup = Tuplizer() X = [tup.undo_transform(ft.transform(x)) for x in X] # print("BEEP", X) # print("PRED:",X) # print("VAL:", super(CustomPipeline, self).predict(X)) return super(CustomPipeline, self).predict(X)
def fit(self, X, y): # print("X",X) # NOTE: Only using boolean values X = [{k: v for k, v in d.items() if isinstance(v, bool)} for d in X] print("FITX", X) ft = Flattener() tup = Tuplizer() self.X = [tup.undo_transform(ft.transform(x)) for x in X] self.y = [int(x) if not isinstance(x, tuple) else x for x in y] super(CustomPipeline, self).fit(self.X, self.y)
def ifit(self, x, y): if not hasattr(self, 'X'): self.X = [] if not hasattr(self, 'y'): self.y = [] ft = Flattener() tup = Tuplizer() # pprint(x) self.X.append(tup.undo_transform(ft.transform(x))) self.y.append(int(y)) # print(self.y) return self.fit(self.X, self.y)
def request(self, state): tup = Tuplizer() flt = Flattener() state = flt.transform(tup.transform(state)) knowledge_base = FoPlanner([(self.ground(a), state[a].replace( '?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], self.feature_set) knowledge_base.fc_infer(depth=1, epsilon=self.epsilon) ostate = { self.unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in knowledge_base.facts } knowledge_base = FoPlanner([(self.ground(a), state[a].replace( '?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], self.function_set) knowledge_base.fc_infer(depth=self.search_depth, epsilon=self.epsilon) state = { self.unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in knowledge_base.facts } actions = [{ 'skill_label': 'NO_LABEL', 'foci_of_attention': [], 'selection': vm['?selection'], 'action': vm['?action'], 'inputs': {e[0]: e[1] for e in vm['?inputs']} } for vm in knowledge_base.fc_query([(('sai', '?selection', '?action', '?inputs'), True)], max_depth=0, epsilon=0)] actions = [(self.Q.evaluate(ostate, self.get_action_key(a)), random(), a) for a in actions] actions.sort(reverse=True) # print(actions) self.last_state = ostate self.last_action = self.get_action_key(actions[0][2]) self.reward = 0 return actions[0][2]
def ifit(self, x, y): if not hasattr(self, 'X'): self.X = [] if not hasattr(self, 'y'): self.y = [] ft = Flattener() tup = Tuplizer() # pprint(x) self.X.append(tup.undo_transform(ft.transform(x))) self.y.append(int(y) if not isinstance(y, tuple) else y) # print("IFIT:",self.X) # print(self.y) return super(CustomPipeline, self).fit(self.X, self.y)
def fit(self, X, y): # print("X",X) # NOTE: Only using boolean values # X = [{k: v for k, v in d.items() if isinstance(v, bool)} for d in X] # print("FITX", X) # print("GIN JEF", X[-1]) ft = Flattener() tup = Tuplizer() lvf = ListValueFlattener() X = lvf.transform(X) # print("GIN FEF", X[-1]) self.X = [tup.undo_transform(ft.transform(x)) for x in X] self.y = [int(x) if not isinstance(x, tuple) else x for x in y] # print("GIN IN") # print(self.X[-1]) # print("BLOOP:",len(self.y)) super(CustomPipeline, self).fit(self.X, self.y)
def train(self, state, label, foas, selection, action, inputs, correct): # create example dict example = {} example['state'] = state example['label'] = label example['selection'] = selection example['action'] = action example['inputs'] = inputs example['correct'] = correct example['foa_args'] = tuple(['?obj-' + foa for foa in foas]) example['foa_names'] = {("name", "?foa%i" % i): foa for i, foa in enumerate(foas)} example['foa_values'] = {("value", "?foa%i" % i): state['?obj-' + foa]['value'] for i, foa in enumerate(foas)} example['foa_values'][("value", "?foa0")] = "" example['limited_state'] = {("value", "?foa%i" % i): state['?obj-' + foa]['value'] for i, foa in enumerate(foas)} example['limited_state'][("value", "?foa0")] = "" for attr in example['foa_names']: example['limited_state'][attr] = example['foa_names'][attr] tup = Tuplizer() flt = Flattener() # pprint(state) example['flat_state'] = flt.transform(tup.transform(state)) # pprint(example['flat_state']) # import time # time.sleep(1000) # pprint(example) if label not in self.skills: self.skills[label] = {} # add example to examples if label not in self.examples: self.examples[label] = [] self.examples[label].append(example) if label not in self.how_instances: self.how_instances[label] = self.how(planner=self.planner) # how = self.how(functions=functions, how_params=self.how_params) how_result = self.how_instances[label].ifit(example) # print(len(self.examples[label])) # for exp in how_result: # correctness = [e['correct'] for e in how_result[exp]] # print(label, len(correctness), sum(correctness) / # len(correctness) , exp) # print() # act_plan = ActionPlanner(actions=functions, # act_params=self.how_params) # explanations = [] # for exp in self.skills[label]: # #print("CHECKING EXPLANATION", exp) # try: # grounded_plan = tuple([act_plan.execute_plan(ele, # example['limited_state']) # for ele in exp]) # if act_plan.is_sais_equal(grounded_plan, sai): # #print("found existing explanation") # explanations.append(exp) # except Exception as e: # #print("EXECPTION WITH", e) # continue # if len(explanations) == 0: # explanations = act_plan.explain_sai(example['limited_state'], # sai) # #print("EXPLANATIONS") # #pprint(explanations) # first delete old skill description del self.skills[label] self.skills[label] = {} # build new skill descriptions for exp in how_result: print('EXP', exp, correct) self.skills[label][exp] = {} self.skills[label][exp]['args'] = [] self.skills[label][exp]['foa_states'] = [] self.skills[label][exp]['examples'] = [] self.skills[label][exp]['correct'] = [] where = self.where() when = when_learners[self.when](self.when_params) # when = Pipeline([('dict_vect', DictVectorizer(sparse=False)), # ('clf', self.when())]) self.skills[label][exp]['where_classifier'] = where self.skills[label][exp]['when_classifier'] = when for e in how_result[exp]: self.skills[label][exp]['args'].append(e['foa_args']) self.skills[label][exp]['examples'].append(e) self.skills[label][exp]['correct'].append(int(e['correct'])) T = self.skills[label][exp]['args'] y = self.skills[label][exp]['correct'] # foa_state = {attr: example['flat_state'][attr] # for attr in example['flat_state'] # #if (isinstance(attr, tuple) and attr[0] != "value") or # #not isinstance(attr, tuple) # } # print("FOA STATE") # pprint(T[0]) # pprint(foa_state) # structural_X = [e['flat_state'] for e in # self.skills[label][exp]['examples']] # Should rewrite this so that I use the right values. # structural_X = [foa_state for t in T] # structural_X = self.skills[label][exp]['foa_states'] structural_X = [] for i, e in enumerate(self.skills[label][exp]['examples']): x = {attr: e['flat_state'][attr] for attr in e['flat_state']} # x_vals = {a: x[a] for a in x if isinstance(a, tuple) and a[0] == # "value" and a[1] in self.skills[label][exp]['args'][i]} # print("COMPUTED FEATURES") # pprint([a for a in # compute_features(x_vals,self.action_set.get_feature_dict())]) # x.update(compute_features(x_vals,self.action_set.get_feature_dict())) # pprint(x) structural_X.append(x) value_X = [] for e in self.skills[label][exp]['examples']: x = {attr: e['foa_values'][attr] for attr in e['foa_values']} if self.what: what_features = {} for attr in x: if isinstance(x[attr], str) and x[attr] != "": seq = [ c for c in x[attr].lower().replace( '"', "").replace("\\", "") ] # print(seq) # print(self.what.parse(seq)) new_what_f = self.what.get_features(attr, seq) for attr in new_what_f: what_features[attr] = new_what_f[attr] x.update( compute_features(x, self.action_set.get_feature_dict())) if self.what: x.update(what_features) # for attr, value in self.compute_features(x, features): # x[attr] = value # for attr in e['foa_names']: # x[attr] = e['foa_names'][attr] x = tup.undo_transform(x) pprint(x) value_X.append(x) #if example['label'] == "convert-different-num2": # print("CORRECTNESS:", e['correct']) # pprint(x) self.skills[label][exp]['where_classifier'].fit(T, structural_X, y) self.skills[label][exp]['when_classifier'].fit(value_X, y)
# setup += "from __main__ import random_instance\n" # setup += "from __main__ import test\n" # setup += "c = random_concept(1, %i)\n" % i # setup += "i = random_instance(%i)\n" % i # # for j in range(10): # print("%i\t%0.3f" % (i, timeit.timeit("test(c,i)", setup=setup, # number=10))) num_c_inst = 1 num_objs = 20 concept = random_concept(num_instances=num_c_inst, num_objects=num_objs) instance = random_instance(num_objects=num_objs) pl = Pipeline(Tuplizer(), SubComponentProcessor(), Flattener()) #i = sm.transform(pl.transform(subconcept.av_counts)) #print("STRUCTURE MAPPED INSTANCE") #print(i) pipeline = Pipeline(Tuplizer(), NameStandardizer(concept.tree.gensym), SubComponentProcessor(), Flattener()) #ns = NameStandardizer(concept.tree.gensym) #pprint(subconcept.av_counts) #instance = ns.transform(subconcept.av_counts) instance = pipeline.transform(random_instance(num_objects=num_objs)) inames = frozenset(get_component_names(instance))
def train(self, state, selection, action, inputs, reward, skill_label, foci_of_attention): """ Doc String """ # print('\n'*5) # print('state', skill_label) # print('skill_label', skill_label) # print('selection', selection) # print('action', action) # print('inputs', inputs) # print('reward', reward) # print('state') # pprint(state) # label = 'math' # create example dict example = {} example['state'] = state example['skill_label'] = skill_label example['selection'] = selection example['action'] = action example['inputs'] = inputs example['reward'] = float(reward) tup = Tuplizer() flt = Flattener() example['flat_state'] = flt.transform(tup.transform(state)) knowledge_base = FoPlanner( [(ground(a), example['flat_state'][a].replace('?', 'QM') if isinstance( example['flat_state'][a], str) else example['flat_state'][a]) for a in example['flat_state']], self.feature_set) knowledge_base.fc_infer(depth=1, epsilon=self.epsilon) example['flat_state'] = { unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in knowledge_base.facts } if skill_label not in self.skills: self.skills[skill_label] = {} explanations = [] secondary_explanations = [] # the base explaination (the constants) input_args = tuple(sorted([arg for arg in inputs])) sai = ('sai', selection, action, *[inputs[a] for a in input_args]) # Need to do stuff with features here too. # used for grounding out plans, don't need to build up each time. # print(function_sets[self.action_set]) # knowledge_base = FoPlanner([(ground(a), # example['flat_state'][a].replace('?', 'QM') # if isinstance(example['flat_state'][a], str) # else example['flat_state'][a]) # for a in example['flat_state']], # self.function_set) # knowledge_base.fc_infer(depth=self.search_depth, epsilon=self.epsilon) # FACTS AFTER USING FUNCTIONS. # pprint(knowledge_base.facts) #DANNY: The gist of this is to find_ applicable_skills (explanations because the inputs/outputs are literals) for skill, learner_dict in self.skills[skill_label].items(): exp, iargs = skill for match in self.explain_sai(skill, learner_dict, sai, knowledge_base, example['flat_state']): # print("MATCH", match) # print("COVERED", exp, m) #DANNY NOTES: #sai = ('sai', 'JCommTable5.R0C0', 'UpdateTextArea', '16') #exp = ('sai', ('id', '?foa0'), 'UpdateTextArea', ('value', ('Multiply', ('value', '?foa1'), ('value', '?foa2')))) #r_exp = the explanation renamed with the match literals #ARGS = A list of input arguements to the explanations #IARGS: = A tuple of outputs? Or maybe a set of property names (i.e. 'value'). #Match = A dictionary mapping from ?foas to element strings (the element names have QM instead of ?) r_exp = unground(list(rename_flat({exp: True}, match))[0]) args = get_vars(exp) # print("sai:", sai) # print("exp:", exp) # print("r_exp:", r_exp) # print("ARGS:", args) # print("IARGS:", iargs, type(iargs)) # print("match", match) # Need to check if it would have been actully generated # under where and when. # Danny: Makes sure that there is a match for every arguement if len(args) != len(match): continue # print("HERE1") #DANNY: Checks that the match resolves to string elements grounded = True for ele in match: if not isinstance(match[ele], str): grounded = False break if not grounded: #DANNY: Doesn't really happen... not sure in what circumstances this would happen # print("BAD MATCH: ", match) continue # print("HERE2") tup = tuple([ match["?foa%s" % i].replace("QM", "?") for i in range(len(match)) ]) # print("tup:", tup) #tup = a tuple of the matches #Danny: Makes sure that the explanation hasn't used an foa twice if len(tup) != len(set(tup)): continue # print("HERE3") secondary_explanations.append(r_exp) #Danny: Check that the where learner approves of the match # It seems like the where learner should have just generated this if it was going to check it anyway # This is only at the end it seems to allow for secondary explanations which the where learner is not yet aware of # print("A", self.skills[skill_label]) # print("B", self.skills[skill_label][(exp, iargs)]) skill_where = self.skills[skill_label][(exp, iargs)]['where'] if not skill_where.check_match(tup, example['flat_state']): continue # print("ADDING", r_exp) explanations.append(r_exp) if len(explanations) == 0 and len(secondary_explanations) > 0: explanations.append(choice(secondary_explanations)) elif len(explanations) == 0: explanations = self.explanations_from_how_search( example['flat_state'], ('sai', selection, action, inputs), input_args) #Danny: Do the training for all the applicable explanations # print("EXPLAINS", explanations) for exp in explanations: args = get_vars(exp) foa_vmapping = { field: '?foa%s' % j for j, field in enumerate(args) } foa_mapping = {field: 'foa%s' % j for j, field in enumerate(args)} r_exp = (list(rename_flat({exp: True}, foa_vmapping))[0], input_args) if r_exp not in self.skills[skill_label]: # TODO - Hack for specific action set # if self.action_set == "tutor knowledge": # constraints = self.generate_tutor_constraints(r_exp[0]) # else: # constraints = self.extract_mg_h(r_exp[0]) # constraints = extract_mg_h(r_exp[0]) constraints = generate_html_tutor_constraints(r_exp[0]) # print("CONSTRAINTS") # print(constraints) w_args = tuple(['?foa%s' % j for j, _ in enumerate(args)]) self.skills[skill_label][r_exp] = {} where_inst = self.where(args=w_args, constraints=constraints) self.skills[skill_label][r_exp]['where'] = where_inst self.skills[skill_label][r_exp]['when'] = self.when() self.skills[skill_label][r_exp]['where'].ifit( args, example['flat_state'], example['reward']) # print('done where learning') # TODO # Need to add computed features. # need to rename example with foa's that are not variables r_flat = rename_flat(example['flat_state'], foa_mapping) self.skills[skill_label][r_exp]['when'].ifit( r_flat, example['reward'])
def request(self, state): tup = Tuplizer() flt = Flattener() state = flt.transform(tup.transform(state)) new = {} for attr in state: if (isinstance(attr, tuple) and attr[0] == 'value'): new[('editable', attr[1])] = state[attr] == '' for attr2 in state: if (isinstance(attr2, tuple) and attr2[0] == 'value'): if (attr2 == attr or attr < attr2 or (state[attr] == "" or state[attr2] == "")): continue if (state[attr] == state[attr2]): new[('eq', attr, attr2)] = True state.update(new) # pprint(state) # for episode in range(self.max_episodes): while True: print("#########") print("NEW TRACE") print("#########") kb = FoPlanner([(self.ground(a), state[a].replace('?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], functionsets[self.action_set]) curr_state = {x[0]: x[1] for x in kb.facts} next_actions = [a for a in kb.fc_get_actions(epsilon=epsilon)] trace_actions = [] depth = 0 while depth < search_depth: actions = [(self.Q.evaluate(curr_state, get_action_key(a)), a) for a in next_actions] print("NEXT ACTION WEIGHTS") print( sorted([(w, a[0].name[0]) for w, a in actions], reverse=True)) # operator, mapping, effects = weighted_choice(actions) operator, mapping, effects = max_choice(actions) # operator, mapping, effects = choice(action_space) self.last_state = curr_state self.last_action = get_action_key((operator, mapping, effects)) trace_actions.append(subst(mapping, operator.name)) for f in effects: kb.add_fact(f) # if not termainal, then decrease reward # self.reward = -1 self.reward = 0 curr_state = {x[0]: x[1] for x in kb.facts} depth += 1 # check if we're in a terminal state # if so, query oracle for f in effects: f = self.unground(f) if f[0] == 'sai': response = {} response['label'] = str(trace_actions) response['selection'] = f[1] response['action'] = f[2] response['inputs'] = {'value': f[3]} # {a: rg_exp[3+i] for i, a in # enumerate(input_args)} # response['inputs'] = list(rg_exp[3:]) response['foas'] = [] # pprint(response) print("EXECUTING ACTION", self.last_action) print("Requesting oracle feedback") return response # punish for failed search if depth >= search_depth: # self.reward -= 3 * search_depth curr_state = None next_actions = [] else: # because we're not terminal we can compute next_actions next_actions = [ a for a in kb.fc_get_actions(epsilon=epsilon, must_match=effects) ] self.Q.update(self.last_state, self.last_action, self.reward, curr_state, next_actions)
def pre_process(instance): """ Runs all of the pre-processing functions >>> _reset_gensym() >>> import pprint >>> instance = {"noma":"a","num3":3,"compa":{"nomb":"b","num4":4,"sub":{"nomc":"c","num5":5}},"compb":{"nomd":"d","nome":"e"},"(related compa.num4 compb.nome)":True,"list1":["a","b",{"i":1,"j":12.3,"k":"test"}]} >>> pprint.pprint(instance) {'(related compa.num4 compb.nome)': True, 'compa': {'nomb': 'b', 'num4': 4, 'sub': {'nomc': 'c', 'num5': 5}}, 'compb': {'nomd': 'd', 'nome': 'e'}, 'list1': ['a', 'b', {'i': 1, 'j': 12.3, 'k': 'test'}], 'noma': 'a', 'num3': 3} >>> instance = pre_process(instance) >>> pprint.pprint(instance) {'noma': 'a', 'num3': 3, ('has-component', 'compa', 'sub'): True, ('has-element', 'list1', '?o4'): True, ('has-element', 'list1', '?o5'): True, ('has-element', 'list1', '?o6'): True, ('i', '?o6'): 1, ('j', '?o6'): 12.3, ('k', '?o6'): 'test', ('nomb', 'compa'): 'b', ('nomc', 'sub'): 'c', ('nomd', 'compb'): 'd', ('nome', 'compb'): 'e', ('num4', 'compa'): 4, ('num5', 'sub'): 5, ('ordered-list', 'list1', '?o4', '?o5'): True, ('ordered-list', 'list1', '?o5', '?o6'): True, ('related', 'compa.num4', 'compb.nome'): True, ('val', '?o4'): 'a', ('val', '?o5'): 'b'} >>> instance = pre_process(instance) >>> pprint.pprint(instance) {'noma': 'a', 'num3': 3, ('has-component', 'compa', 'sub'): True, ('has-element', 'list1', '?o4'): True, ('has-element', 'list1', '?o5'): True, ('has-element', 'list1', '?o6'): True, ('i', '?o6'): 1, ('j', '?o6'): 12.3, ('k', '?o6'): 'test', ('nomb', 'compa'): 'b', ('nomc', 'sub'): 'c', ('nomd', 'compb'): 'd', ('nome', 'compb'): 'e', ('num4', 'compa'): 4, ('num5', 'sub'): 5, ('ordered-list', 'list1', '?o4', '?o5'): True, ('ordered-list', 'list1', '?o5', '?o6'): True, ('related', 'compa.num4', 'compb.nome'): True, ('val', '?o4'): 'a', ('val', '?o5'): 'b'} """ tuplizer = Tuplizer() instance = tuplizer.transform(instance) list_processor = ListProcessor() instance = list_processor.transform(instance) standardizer = NameStandardizer() instance = standardizer.transform(instance) sub_component_processor = SubComponentProcessor() instance = sub_component_processor.transform(instance) flattener = Flattener() instance = flattener.transform(instance) return instance
def predict(self, X): ft = Flattener() tup = Tuplizer() X = [tup.undo_transform(ft.transform(x)) for x in X] return super(CustomPipeline, self).predict(X)
def request(self, state): # print(state) # print("REQUEST RECEIVED") tup = Tuplizer() flt = Flattener() state = flt.transform(tup.transform(state)) # new = {} # for attr in state: # if (isinstance(attr, tuple) and attr[0] == 'value'): # new[('editable', attr[1])] = state[attr] == '' # for attr2 in state: # if (isinstance(attr2, tuple) and attr2[0] == 'value'): # if (attr2 == attr or attr < attr2 or # (state[attr] == "" or state[attr2] == "")): # continue # if (state[attr] == state[attr2]): # new[('eq', attr, attr2)] = True # state.update(new) kb = FoPlanner([(self.ground(a), state[a].replace('?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], featuresets[self.action_set]) kb.fc_infer(depth=1, epsilon=epsilon) state = {self.unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in kb.facts} # pprint(state) # compute features # for attr, value in self.compute_features(state): # state[attr] = value skillset = [] for label in self.skills: for exp in self.skills[label]: pos = self.skills[label][exp]['where'].num_pos() neg = self.skills[label][exp]['where'].num_neg() skillset.append((pos / (pos + neg), pos + neg, random(), label, exp, self.skills[label][exp])) skillset.sort(reverse=True) # print('####SKILLSET####') pprint(skillset) # print('####SKILLSET####') # used for grounding out plans, don't need to build up each time. kb = FoPlanner([(self.ground(a), state[a].replace('?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], functionsets[self.action_set]) kb.fc_infer(depth=search_depth, epsilon=epsilon) # print(kb) for _, _, _, label, (exp, input_args), skill in skillset: # print() # print("TRYING:", label, exp) # print("Conditions:") # pprint(skill['where'].operator.conditions) # Continue until we either do something with the rule. For example, # generate an SAI or determine that the rule doesn't match. If we # get some kind of failure, such as being unable to execute an # action sequence, then we want to learn from that and try again. failed = True while failed: failed = False for m in skill['where'].get_matches(state, epsilon=epsilon): if len(m) != len(set(m)): # print("GENERATED MATCH WITH TWO VARS BOUND TO ", # "SAME THING") continue # print("MATCH FOUND", label, exp, m) vmapping = {'?foa' + str(i): ele for i, ele in enumerate(m)} mapping = {'foa' + str(i): ele for i, ele in enumerate(m)} r_exp = list(rename_flat({exp: True}, vmapping))[0] r_state = rename_flat(state, {mapping[a]: a for a in mapping}) # pprint(r_state) # pprint(r_state) rg_exp = [] for ele in r_exp: if isinstance(ele, tuple): # kb = FoPlanner([(self.ground(a), # state[a].replace('?', 'QM') if # isinstance(state[a], str) else # state[a]) # for a in state], # functionsets[self.action_set]) for vm in kb.fc_query([(self.ground(ele), '?v')], max_depth=0, epsilon=epsilon): # if vm['?v'] == '': # raise Exception("Should not be an" # " empty str") if vm['?v'] != '': rg_exp.append(vm['?v']) break else: rg_exp.append(ele) if len(rg_exp) != len(r_exp): # print("FAILED TO FIRE RULE") # print(rg_exp, 'from', r_exp) continue # # add neg to where # skill['where'].ifit(m, state, 0) # # add neg to when # foa_mapping = {field: 'foa%s' % j for j, field in # enumerate(m)} # neg_x = rename_flat(state, foa_mapping) # skill['when'].ifit(neg_x) # failed = True # break # print("predicting") # pprint(r_state) # c = skill['when'].categorize(r_state) p = skill['when'].predict([r_state])[0] # print("###CATEGORIZED CONCEPT###") # print(c) # pprint(c.av_counts) # print(c.predict('correct')) if p == 0: # print("predicting FAIL") continue # print("predicting FIRE") # if not c.predict('correct'): # print("predicting FAIL") # continue # print("predicting FIRE") # print("###TREE###") # print(skill['when']) # pprint(r_exp) # pprint(rg_exp) # assert self.explains_sai(kb, r_exp, rg_exp) response = {} response['label'] = label response['selection'] = rg_exp[1] response['action'] = rg_exp[2] response['inputs'] = {a: rg_exp[3+i] for i, a in enumerate(input_args)} # response['inputs'] = list(rg_exp[3:]) response['foas'] = [] # pprint(response) return response return {}
def train(self, state, label, foas, selection, action, inputs, correct): print('label', label) print('selection', selection) print('action', action) print('input', inputs) print('correct', correct) # label = 'math' # create example dict example = {} example['state'] = state example['label'] = label example['selection'] = selection example['action'] = action example['inputs'] = inputs example['correct'] = correct tup = Tuplizer() flt = Flattener() example['flat_state'] = flt.transform(tup.transform(state)) # print('SAI:', selection, action, inputs) # print('State:') # pprint(example['state']) # print('Flat State:') # pprint(example['flat_state']) # new = {} # for attr in example['flat_state']: # if (isinstance(attr, tuple) and attr[0] == 'value'): # new[('editable', attr[1])] = # example['flat_state'][attr] == '' # for attr2 in example['flat_state']: # if (isinstance(attr2, tuple) and attr2[0] == 'value'): # if (attr2 == attr or attr < attr2 or # (example['flat_state'][attr] == "" or # example['flat_state'][attr2] == "")): # continue # if ((example['flat_state'][attr] == # example['flat_state'][attr2])): # new[('eq', attr, attr2)] = True # example['flat_state'].update(new) kb = FoPlanner([(self.ground(a), example['flat_state'][a].replace('?', 'QM') if isinstance(example['flat_state'][a], str) else example['flat_state'][a]) for a in example['flat_state']], featuresets[self.action_set]) kb.fc_infer(depth=1, epsilon=epsilon) example['flat_state'] = {self.unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in kb.facts} # pprint(example['flat_state']) if label not in self.skills: self.skills[label] = {} explainations = [] secondary_explainations = [] # the base explaination (the constants) input_args = tuple(sorted([arg for arg in inputs])) sai = ('sai', selection, action, *[inputs[a] for a in input_args]) # Need to do stuff with features here too. # used for grounding out plans, don't need to build up each time. # print(functionsets[self.action_set]) kb = FoPlanner([(self.ground(a), example['flat_state'][a].replace('?', 'QM') if isinstance(example['flat_state'][a], str) else example['flat_state'][a]) for a in example['flat_state']], functionsets[self.action_set]) kb.fc_infer(depth=search_depth, epsilon=epsilon) # FACTS AFTER USING FUNCTIONS. # pprint(kb.facts) for exp, iargs in self.skills[label]: # kb = FoPlanner([(self.ground(a), # example['flat_state'][a].replace('?', 'QM') if # isinstance(example['flat_state'][a], str) else # example['flat_state'][a]) # for a in example['flat_state']], # functionsets[self.action_set]) for m in self.explains_sai(kb, exp, sai): # print("COVERED", exp, m) # Need to check if it would have been actully generated # under where and when. r_exp = self.unground(list(rename_flat({exp: True}, m))[0]) args = self.get_vars(exp) if len(args) != len(m): # print("EXP not same length") continue grounded = True for ele in m: if not isinstance(m[ele], str): grounded = False break if not grounded: # print("Pattern not fully grounded") continue # foa_vmapping = {field: '?foa%s' % j # for j, field in enumerate(args)} # foa_mapping = {field: 'foa%s' % j for j, field in # enumerate(args)} t = tuple([m["?foa%s" % i].replace("QM", "?") for i in range(len(m))]) if len(t) != len(set(t)): # print("TWO VARS BOUND TO SAME") continue secondary_explainations.append(r_exp) # print("This is my T:", t) skill_where = self.skills[label][(exp, iargs)]['where'] if not skill_where.check_match(t, example['flat_state']): continue # print("####### SUCCESSFUL WHERE MATCH########") # x = rename_flat(example['flat_state'], foa_mapping) # c = self.skills[label][(exp, iargs)]['when'].categorize(x) # if not c.predict('correct'): # continue # print("ADDING", r_exp) explainations.append(r_exp) if len(explainations) == 0 and len(secondary_explainations) > 0: explainations.append(choice(secondary_explainations)) # explainations.append(secondary_explanation) elif len(explainations) == 0: # kb = FoPlanner([(self.ground(a), # example['flat_state'][a].replace('?', 'QM') if # isinstance(example['flat_state'][a], str) else # example['flat_state'][a]) # for a in example['flat_state']], # functionsets[self.action_set]) selection_exp = selection for sel_match in kb.fc_query([('?selection', selection)], max_depth=0, epsilon=epsilon): selection_exp = sel_match['?selection'] break input_exps = [] for a in input_args: iv = inputs[a] # kb = FoPlanner([(self.ground(a), # example['flat_state'][a].replace('?', 'QM') if # isinstance(example['flat_state'][a], str) else # example['flat_state'][a]) # for a in example['flat_state']], # functionsets[self.action_set]) input_exp = iv # print('trying to explain', [((a, '?input'), iv)]) # TODO not sure what the best approach is for choosing among # the possible explanations. Perhaps we should choose more than # one. Maybe the shortest (less deep). # f = False possible = [] for iv_m in kb.fc_query([((a, '?input'), iv)], max_depth=0, epsilon=epsilon): # input_exp = (a, iv_m['?input']) possible.append((a, iv_m['?input'])) # print("FOUND!", input_exp) # f = True # break possible = [(self.compute_exp_depth(p), random(), p) for p in possible] possible.sort() # print("FOUND!") # pprint(possible) if len(possible) > 0: _, _, input_exp = possible[0] # input_exp = choice(possible) # if not f: # print() # print("FAILED TO EXPLAIN INPUT PRINTING GOAL AND FACTS") # print("GOAL:", ((a, '?input'), iv)) # for f in kb.facts: # if f[0][0] == 'value': # print(f) # from time import sleep # sleep(30) # # pprint(kb.facts) input_exps.append(input_exp) explainations.append(self.unground(('sai', selection_exp, action, *input_exps))) for exp in explainations: args = self.get_vars(exp) foa_vmapping = {field: '?foa%s' % j for j, field in enumerate(args)} foa_mapping = {field: 'foa%s' % j for j, field in enumerate(args)} x = rename_flat({exp: True}, foa_vmapping) r_exp = (list(x)[0], input_args) # r_exp = self.replace_vars(exp) # print("REPLACED") # print(exp) # print(r_exp) if r_exp not in self.skills[label]: # mg_h = self.extract_mg_h(r_exp[0]) if self.action_set == "tutor knowledge": constraints = self.generate_tutor_constraints(r_exp[0]) else: constraints = self.extract_mg_h(r_exp[0]) # print("ACTIONSET") # print(self.action_set) # print("SAI") # print(r_exp[0]) print("CONSTRAINTS") print(constraints) w_args = tuple(['?foa%s' % j for j, _ in enumerate(args)]) self.skills[label][r_exp] = {} where_inst = self.where(args=w_args, constraints=constraints) self.skills[label][r_exp]['where'] = where_inst # initial_h=mg_h) self.skills[label][r_exp]['when'] = when_learners[self.when]() # print('where learning for ', exp) self.skills[label][r_exp]['where'].ifit(args, example['flat_state'], example['correct']) # print('done where learning') # TODO # Need to add computed features. # need to rename example with foa's that are not variables x = rename_flat(example['flat_state'], foa_mapping) # x['correct'] = example['correct'] # print('ifitting') # pprint(x) # self.skills[label][r_exp]['when'].ifit(x) self.skills[label][r_exp]['when'].ifit(x, example['correct'])
def request(self, state): ff = Flattener() tup = Tuplizer() state = tup.transform(state) state = ff.transform(state) pprint(state) # foa_state = {attr: state[attr] for attr in state # if (isinstance(attr, tuple) and attr[0] != "value") or # not isinstance(attr, tuple)} # This is basically conflict resolution here. skills = [] for label in self.skills: for seq in self.skills[label]: corrects = self.skills[label][seq]['correct'] accuracy = sum(corrects) / len(corrects) s = ((label, seq), accuracy) # s = (random(), len(corrects), label, seq) skills.append(s) # skills.sort(reverse=True) # for _,_,label,seq in skills: # s = self.skills[label][seq] # print(str(seq)) while len(skills) > 0: # probability matching (with accuracy) conflict resolution # (label, seq), accuracy = weighted_choice(skills) # random conflict resolution (label, seq), accuracy = choice(skills) skills.remove(((label, seq), accuracy)) s = self.skills[label][seq] for m in s['where_classifier'].get_matches(state): print("MATCH", label, m) if isinstance(m, tuple): mapping = { "?foa%i" % i: str(ele) for i, ele in enumerate(m) } else: mapping = {'?foa0': m} # print('trying', m) if state[('value', mapping['?foa0'])] != "": # print('no selection') continue limited_state = {} for foa in mapping: limited_state[('name', foa)] = state[('name', mapping[foa])] limited_state[('value', foa)] = state[('value', mapping[foa])] try: print('SEQ:', seq) grounded_plan = tuple([ self.planner.execute_plan(ele, limited_state) for ele in seq ]) except Exception as e: # print('plan could not execute') # pprint(limited_state) # print("EXECPTION WITH", e) continue vX = {} for foa in mapping: vX[('value', foa)] = state[('value', mapping[foa])] if self.what: what_features = {} for attr in vX: if isinstance(vX[attr], str) and vX[attr] != "": seq = [ c for c in vX[attr].lower().replace( '"', "").replace("\\", "") ] # print(seq) # print(self.what.parse(seq)) new_what_f = self.what.get_features(attr, seq) for attr in new_what_f: what_features[attr] = new_what_f[attr] # what_training += [x[attr] for attr in x if isinstance(x[attr], # str) and # x[attr] != ""] vX.update( compute_features(vX, self.action_set.get_feature_dict())) if self.what: vX.update(what_features) # for attr, value in self.compute_features(vX, features): # vX[attr] = value # for foa in mapping: # vX[('name', foa)] = state[('name', mapping[foa])] vX = tup.undo_transform(vX) print("WHEN PREDICTION STATE") pprint(vX) when_pred = s['when_classifier'].predict([vX])[0] # print(label, seq, s['when_classifier']) # pprint(when_pred) if when_pred == 0: continue # pprint(limited_state) print("FOUND SKILL MATCH!") # pprint(limited_state) # pprint(seq) pprint(grounded_plan) response = {} response['label'] = label response['selection'] = grounded_plan[2] response['action'] = grounded_plan[1] # response['inputs'] = list(grounded_plan[3:]) # TODO replace value here with input_args, which need to be # tracked. if grounded_plan[2] == 'done': response['inputs'] = {} else: response['inputs'] = { a: grounded_plan[3 + i] for i, a in enumerate(['value']) } response['foas'] = [] # response['foas'].append("|" + # limited_state[("name", "?foa0")] + # "|" + grounded_plan[3]) for i in range(1, len(mapping)): response['foas'].append(limited_state[("name", "?foa%i" % i)]) # response['foas'].append("|" + # limited_state[("name", "?foa%i" % i)] # + # "|" + # limited_state[('value', "?foa%i" % i)]) pprint(response) return response # import time # time.sleep(5) return {}
def flatten_state(state): tup = Tuplizer() flt = Flattener() state = flt.transform(tup.transform(state)) return state
def request(self, state): """ Doc String TODO - several Linter problems with this one """ tup = Tuplizer() flt = Flattener() state = flt.transform(tup.transform(state)) knowledge_base = FoPlanner([(ground(a), state[a].replace('?', 'QM') if isinstance(state[a], str) else state[a]) for a in state], self.feature_set) knowledge_base.fc_infer(depth=1, epsilon=self.epsilon) state = { unground(a): v.replace("QM", "?") if isinstance(v, str) else v for a, v in knowledge_base.facts } skillset = [] # pprint(self.skills) for skill_label in self.skills: for exp in self.skills[skill_label]: pos = self.skills[skill_label][exp]['where'].num_pos() neg = self.skills[skill_label][exp]['where'].num_neg() skillset.append( (pos / (pos + neg), pos + neg, random(), skill_label, exp, self.skills[skill_label][exp])) skillset.sort(reverse=True) # used for grounding out plans, don't need to build up each time. # knowledge_base = FoPlanner([(ground(a), state[a].replace('?', 'QM') # if isinstance(state[a], str) # else state[a]) # for a in state], # self.function_set) # knowledge_base.fc_infer(depth=self.search_depth, epsilon=self.epsilon) # TODO - would it be too expensive to make skillset contain some kind of Skill object? # because this for loop is ridiculous for _, _, _, skill_label, (exp, input_args), skill in skillset: # print("STATE") # pprint(state) # print("--------") # print(exp) # print("contentEditable: ",state.get( ('contentEditable',"?ele-" + exp[1]) ,True) ) # if(state.get( ('contentEditable',"?ele-" + exp[1]) ,True) == False): # continue # print("") # print("REQUEST_EXPLAINS", exp) # Continue until we either do something with the rule. For example, # generate an SAI or determine that the rule doesn't match. If we # get some kind of failure, such as being unable to execute an # action sequence, then we want to learn from that and try again. failed = True # print("SKILL: ",exp, input_args) while failed: failed = False # print("STATE") # pprint(state) # print("--------") for match in skill['where'].get_matches(state, epsilon=self.epsilon): # print("REE1") if len(match) != len(set(match)): continue # print("MATCH FOUND", skill_label, exp, match) vmapping = { '?foa' + str(i): ele for i, ele in enumerate(match) } mapping = { 'foa' + str(i): ele for i, ele in enumerate(match) } # print("VMAP") # pprint(vmapping) # print("MAP") # pprint(mapping) r_exp = list(rename_flat({exp: True}, vmapping))[0] r_state = rename_flat(state, {mapping[a]: a for a in mapping}) # print("KB", knowledge_base) rg_exp = eval_expression(r_exp, knowledge_base, self.function_set, self.epsilon) # for ele in r_exp: # if isinstance(ele, tuple): # # print("THIS HAPPENED", ele, ground(ele), execute_functions(ground(ele))) # # execute_functions(subt(u)) # # rg_exp.append() # # print("BLEHH:", operator.effects) # for var_match in knowledge_base.fc_query([(ground(ele), '?v')], # max_depth=0, # epsilon=self.epsilon): # # print("VARM:",var_match, ground(ele)) # if var_match['?v'] != '': # rg_exp.append(var_match['?v']) # # print("HERE_A",rg_exp[-1]) # break # operator_output = apply_operators(ele,self.function_set,knowledge_base,self.epsilon) # # print(operator_output) # if(operator_output != None and operator_output != ""): # rg_exp.append(operator_output) # # print("HERE_B",operator_output) # # if(operator_output != None): # # rg_exp.append(operator_output) # else: # rg_exp.append(ele) # print("REE2") # print("rg_exp:", rg_exp) # print("r_exp:", r_exp) if len(rg_exp) != len(r_exp): continue # print("EXP:", r_exp) # print("RSTATE ---------------") # pprint(r_state) # print("---------------") # print("REE3") prediction = skill['when'].predict([r_state])[0] # print("when", skill['when']) # print("PREDICTION:", type(prediction), prediction) if prediction <= 0: continue # print("REE4") response = {} response['skill_label'] = skill_label response['selection'] = rg_exp[1] response['action'] = rg_exp[2] response['inputs'] = { a: rg_exp[3 + i] for i, a in enumerate(input_args) } # response['inputs'] = list(rg_exp[3:]) response['foci_of_attention'] = [] # pprint(response) return response return {}