示例#1
0
class Clix:
    def __init__(self, creator: Callable):
        self._creator = creator
        self._queue = Queue()
        self._executor = ProcessPoolExecutor()
        self._loop = None

    def reform(self,
               mapper: Callable,
               predicate: Callable = notnull) -> 'Clix':
        self._queue.put_nowait(
            lambda iterable: filter_map(iterable, mapper, predicate))
        return self

    def map(self, mapper: Callable) -> 'Clix':
        self._queue.put_nowait(lambda iterable: gather(*(
            self.__execute(mapper, i) for i in iterable)))
        return self

    def __execute(self, function: Callable, *args: Any) -> Generator:
        return self._loop.run_in_executor(self._executor, function, *args)

    def flatten(self, flattener: Callable = (lambda v: v)) -> 'Clix':
        self._queue.put_nowait(
            lambda iterable: self.__flatten(iterable, flattener))
        return self

    @staticmethod
    async def __flatten(iterable: Iterable, flattener: Callable) -> Generator:
        return (i for si in iterable for i in flattener(si))

    def distinct(self, keymaker: Callable) -> 'Clix':
        self._queue.put_nowait(
            lambda iterable: self.__distinct(iterable, keymaker))
        return self

    @staticmethod
    async def __distinct(iterable: Iterable, keymaker: Callable) -> ValuesView:
        return {keymaker(i): i for i in iterable}.values()

    def sieve(self, mapper: Callable, predicate: Callable = notnull) -> 'Clix':
        return self.reform(lambda i: self.__execute(mapper, i), predicate)

    async def apply(self, applier: Callable) -> Iterable:
        self._loop = get_event_loop()
        iterable = await self._creator()
        while not self._queue.empty():
            function = await self._queue.get()
            iterable = await function(iterable)
        iterable = await gather(*(map(applier, iterable)))
        self._executor.shutdown()
        return iterable

    async def list(self) -> List[Any]:
        iterable = await self.apply(self.__skip)
        return list(iterable)

    @staticmethod
    async def __skip(value: Any) -> Any:
        return value
示例#2
0
class PendantFeaturesService:
    @inject
    def __init__(self,
                 default_params_factory: PendantFeaturesParamsFactory) -> None:
        self._executor = ProcessPoolExecutor(max_workers=1)
        self._default_params_factory = default_params_factory

    def extract(
        self,
        image: np.ndarray,
        params: Optional[PendantFeaturesParams] = None,
        *,
        labels: bool = False,
    ) -> asyncio.Future:
        if params is None:
            params = self._default_params_factory.create()

        cfut = self._executor.submit(
            extract_pendant_features,
            image,
            params.drop_region,
            params.needle_region,
            thresh1=params.thresh1,
            thresh2=params.thresh2,
            labels=labels,
        )

        fut = asyncio.wrap_future(cfut, loop=asyncio.get_event_loop())
        return fut

    def destroy(self) -> None:
        self._executor.shutdown()
示例#3
0
async def main(db_path, max_query_time):
    args = dict(initializer=initializer,
                initargs=(log, db_path, MainNetLedger, 0.25))
    workers = max(os.cpu_count(), 4)
    log.info(f"using {workers} reader processes")
    query_executor = ProcessPoolExecutor(workers, **args)
    tasks = [search(query_executor, constraints) for constraints in get_args()]
    try:
        results = await asyncio.gather(*tasks)
        query_times = [{
            'sql':
            interpolate(*_get_claims(
                """
                        claimtrie.claim_hash as is_controlling,
                        claimtrie.last_take_over_height,
                        claim.claim_hash, claim.txo_hash,
                        claim.claims_in_channel,
                        claim.height, claim.creation_height,
                        claim.activation_height, claim.expiration_height,
                        claim.effective_amount, claim.support_amount,
                        claim.trending_group, claim.trending_mixed,
                        claim.trending_local, claim.trending_global,
                        claim.short_url, claim.canonical_url,
                        claim.channel_hash, channel.txo_hash AS channel_txo_hash,
                        channel.height AS channel_height, claim.signature_valid
                        """, **constraints)),
            'duration':
            ts,
            'error':
            error
        } for ts, constraints, error in results]
        errored = [
            query_info for query_info in query_times if query_info['error']
        ]
        errors = {str(query_info['error']): [] for query_info in errored}
        for error in errored:
            errors[str(error['error'])].append(error['sql'])
        slow = [
            query_info for query_info in query_times if not query_info['error']
            and query_info['duration'] > (max_query_time / 2.0)
        ]
        fast = [
            query_info for query_info in query_times if not query_info['error']
            and query_info['duration'] <= (max_query_time / 2.0)
        ]
        print(f"-- {len(fast)} queries were fast")
        slow.sort(key=lambda query_info: query_info['duration'], reverse=True)
        print(f"-- Failing queries:")
        for error in errors:
            print(f"-- Failure: \"{error}\"")
            for failing_query in errors[error]:
                print(f"{textwrap.dedent(failing_query)};\n")
        print()
        print(f"-- Slow queries:")
        for slow_query in slow:
            print(
                f"-- Query took {slow_query['duration']}\n{textwrap.dedent(slow_query['sql'])};\n"
            )
    finally:
        query_executor.shutdown()
示例#4
0
class ConanFeaturesService:
    @inject
    def __init__(self, default_params_factory: ConanParamsFactory) -> None:
        self._executor = ProcessPoolExecutor(max_workers=1)
        self._default_params_factory = default_params_factory

    def extract(self,
                image: np.ndarray,
                params: Optional[ConanFeaturesParams] = None,
                *,
                labels: bool = False) -> asyncio.Future:
        params = params or self._default_params_factory.create()
        params_dict = {
            'baseline': params.baseline,
            'inverted': params.inverted,
            'thresh': params.thresh,
            'roi': params.roi,
            'labels': labels,
        }
        cfut = self._executor.submit(extract_contact_angle_features, image,
                                     **params_dict)
        fut = asyncio.wrap_future(cfut, loop=asyncio.get_event_loop())
        return fut

    def destroy(self) -> None:
        self._executor.shutdown()
def main():
    pool = ProcessPoolExecutor(max_workers=int(multiprocessing.cpu_count() *
                                               0.5))
    # pool = ProcessPoolExecutor(max_workers=1)
    pages_2 = [{
        'id': "p1",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p2",
        'type': 'STACK',
        'constraint': None
    }]
    pages_3 = [{
        'id': "p1",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p2",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p3",
        'type': 'STACK',
        'constraint': None
    }]
    base_constraints = [
        {
            "type": "EDGES_TO_SUB_ARC_ON_PAGES",
            "arguments": ["0", "1"],  # the outer terminals
            "modifier": ["p1", "p2"]  # the pages
        },
        # inner terminals are after one outer terminal and before the other
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["0"],
            "modifier": ["2", "3"],
        },
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["2", "3"],
            "modifier": ["1"],
        }
    ]
    set_printing(False)
    onlyfiles = [
        os.path.join('500-random-planar-3-trees', f)
        for f in listdir(path='500-random-planar-3-trees')
        if isfile(os.path.join('500-random-planar-3-trees', f))
    ]
    for file in onlyfiles:
        with open(file, mode="r") as f:
            graph_str = f.read()
            future = pool.submit(do_experiment, base_constraints, pages_2,
                                 pages_3, graph_str)
            future.add_done_callback(callback)

    pool.shutdown(wait=True)
def main():
    pool = ProcessPoolExecutor(max_workers=int(multiprocessing.cpu_count() -
                                               2))
    # pool = ProcessPoolExecutor(max_workers=1)
    pages = [{
        'id': "p1",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p2",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p3",
        'type': 'STACK',
        'constraint': None
    }]
    base_constraints = [
        {
            "type": "EDGES_TO_SUB_ARC_ON_PAGES",
            "arguments": ["0", "1"],  # the outer terminals
            "modifier": ["p1", "p2"]  # the pages
        },
        # inner terminals are after one outer terminal and before the other
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["0"],
            "modifier": ["2", "3"],
        },
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["2", "3"],
            "modifier": ["1"],
        }
    ]
    set_printing(False)
    experiments = [
        # (graph_generation.random_planar_gh, 300, [15, 10]),
        (graph_generation.random_planar, 1000, [110]),
        # (graph_generation.spine_graph, 1, list(range(10, 350, 1)))
    ]
    with open("results_random_planar_110.json", mode="a") as f:

        def callback(my_future: Future):
            if not my_future.done() or my_future.cancelled():
                return
            result: ExResult = my_future.result()

            print(simplejson.dumps(result), file=f)

        for graph_gen, number_of_runs, num_node_list in experiments:
            for num_nodes in num_node_list:
                for i in range(number_of_runs):
                    future = pool.submit(do_experiment, base_constraints,
                                         graph_gen, i, num_nodes, pages)
                    future.add_done_callback(callback)

        pool.shutdown(wait=True)
def mat_vec(A: List[List[int]], x: List[int]) -> List[int]:
    N = len(A)
    y = [0] * N
    f = partial(calc, A=A, x=x, y=y)

    pool = ProcessPoolExecutor(max_workers=2)
    pool.map(f, [i for i in range(N)])
    pool.shutdown(wait=True)

    return y
示例#8
0
    class DelayedFileList:
        def __init__(self, filename):
            self.__loader = ProcessPoolExecutor(4)

            self.__filehandle = open(
                filename, "r", encoding="iso-8859-1"
            )  # :type self.__filehandle: typing.TextIO
            self.__lines = 0
            self.__thousand_offsets = [0]
            line = self.__filehandle.readline()
            while line:
                if line.strip():
                    self.__lines += 1
                    if self.__lines % 1000 == 0:
                        self.__thousand_offsets.append(
                            self.__filehandle.tell())
                line = self.__filehandle.readline()
            self.__filehandle.seek(0)

        def __len__(self):
            return self.__lines

        def __getitem__(self, i):
            if i < 0 or i >= len(self):
                raise IndexError("Out of bounds")

            thousand_offset = self.__thousand_offsets[i // 1000]
            remainder = i % 1000

            self.__filehandle.seek(thousand_offset)
            while remainder > 0:
                self.__filehandle.readline()
                remainder -= 1

            name, url = [
                x.strip()
                for x in self.__filehandle.readline().strip().split("\t")
            ]
            class_name = name.split("_")[0]

            pre_image = Image(name, class_name, url, None, None)

            submitted_task = self.__loader.submit(load_image, pre_image.url)

            def deferred_load():
                return submitted_task.result()

            return Image(name, class_name, url,
                         load_annotation_for_image(pre_image), deferred_load)

        def close(self):
            self.__loader.shutdown()
            self.__filehandle.close()
示例#9
0
class SnakeGameExecutor(object):
    def __init__(self, args):
        self.hpv = args.host, args.port, args.venue
        self.executor = ProcessPoolExecutor(max_workers=(os.cpu_count()))

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.executor.shutdown(wait=True)
        return False

    def run_batch(self, batch):
        params = [(*self.hpv, snake) for snake in batch]
        return self.executor.map(run_simulation, params)
示例#10
0
class Pools:
    _instance = None

    def __init__(self):
        self.threaded = ThreadPoolExecutor()
        self.process = ProcessPoolExecutor()

    @staticmethod
    def get():
        if not Pools._instance:
            Pools._instance = Pools()
        return Pools._instance

    def shutdown(self):
        self.threaded.shutdown()
        self.process.shutdown()
async def main(db_path, max_query_time):
    args = dict(initializer=initializer,
                initargs=(log, db_path, MainNetLedger, 0.25))
    workers = max(os.cpu_count(), 4)
    log.info(f"using {workers} reader processes")
    query_executor = ProcessPoolExecutor(workers, **args)
    tasks = [search(query_executor, constraints) for constraints in get_args()]
    try:
        results = await asyncio.gather(*tasks)
        times = {msg: ts for ts, msg in results}
        log.info("\n".join(
            sorted(filter(lambda msg: times[msg] > max_query_time,
                          times.keys()),
                   key=lambda msg: times[msg])))
    finally:
        query_executor.shutdown()
示例#12
0
class ProcessExecutor(Executor):
    slug = 'executor:process'
    name = "Executor: Process"

    awaiter_dict = {
        'as_completed': as_completed,
    }

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.executor = ProcessPoolExecutor(max_workers=self.workers)

    def submit(self, fn: Callable, *args, **kwargs):
        return self.executor.submit(fn, *args, **kwargs)

    def shutdown(self, wait=True):
        self.executor.shutdown(wait)
示例#13
0
def get_linkpred_scores(lp_data,
                        weighted,
                        predictor_indices=None,
                        include_train=False,
                        parallel_version=False):
    predictor_indices = predictor_indices or range(len(all_predictors))
    predictors = [all_predictors[i] for i in predictor_indices]
    predictor_names = [all_predictor_names[i] for i in predictor_indices]
    A_train = lp_data['A_train']
    A_test = lp_data['A_test']
    A_test_pos = lp_data['A_test_pos']
    A_test_neg = lp_data['A_test_neg']
    G_train = nx.from_scipy_sparse_matrix(A_train)
    if include_train:
        pairs = list(itertools.combinations(range(A_train.shape[0]), 2))
    else:
        test_pairs = list(zip(*triu(A_test_pos + A_test_neg).nonzero()))
        pairs = test_pairs if not include_train else test_pairs + list(
            zip(*triu(A_train).nonzero()))
    scores = {}
    if not parallel_version:
        for i, predictor in tqdm(enumerate(predictors), 'Predictor: '):
            predictor_name = predictor_names[i]
            abbr, lp_scores = perform_one_lp(predictor_name, predictor,
                                             G_train, pairs, weighted)
            scores[abbr] = lp_scores
    else:
        num_predictors = len(predictors)
        max_workers = min(num_predictors, multiprocessing.cpu_count())
        pool = ProcessPoolExecutor(max_workers=max_workers)
        process_list = []
        for i, predictor in enumerate(predictors):
            predictor_name = predictor_names[i]
            process_list.append(
                pool.submit(perform_one_lp, predictor_name, predictor, G_train,
                            pairs, weighted))
            print('{} of {} processes scheduled ({})'.format(
                len(process_list), num_predictors, predictor_name))
        for p in as_completed(process_list):
            abbr, lp_scores = p.result()
            scores[abbr] = lp_scores
            print('{} of {} processes completed'.format(
                len(scores), len(process_list)))
        pool.shutdown(wait=True)
    scores_df = pd.DataFrame(scores)
    return scores_df
示例#14
0
def lyricSpider(user_id):
    print("======= 开始爬 歌词 信息 ===========")
    startTime = datetime.datetime.now()
    print(startTime.strftime('%Y-%m-%d %H:%M:%S'))
    # 所有歌手数量
    try:
        musics_num = sql.get_music_num(user_id)
    except:
        print("用户未开启权限,程序结束")
        sys.exit(0)
    print("musics :", len(musics_num), "start")
    batch = math.ceil(musics_num.get('num') / 34.0)
    pool = ProcessPoolExecutor(3)
    for index in range(0, batch):
        pool.submit(saveLyricBatch, user_id, index)
    pool.shutdown(wait=True)
    print("======= 结束爬 歌词 信息 ===========")
    endTime = datetime.datetime.now()
    print(endTime.strftime('%Y-%m-%d %H:%M:%S'))
    print("耗时:", (endTime - startTime).seconds, "秒")
示例#15
0
def main():
    pool = ProcessPoolExecutor(max_workers=int(multiprocessing.cpu_count() *
                                               0.25))
    pages = [{
        'id': "p1",
        'type': 'STACK',
        'constraint': None
    }, {
        'id': "p2",
        'type': 'STACK',
        'constraint': None
    }]
    base_constraints = [
        {
            "type": "EDGES_TO_SUB_ARC_ON_PAGES",
            "arguments": ["0", "1"],  # the outer terminals
            "modifier": ["p1", "p2"]  # the pages
        },
        # inner terminals are after one outer terminal and before the other
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["0"],
            "modifier": ["2", "3"],
        },
        {
            "type": "NODES_PREDECESSOR",
            "arguments": ["2", "3"],
            "modifier": ["1"],
        }
    ]
    set_printing(False)

    with open("results_random_planar_110.json", mode="r") as f:
        for line in f:
            future = pool.submit(do_experiment, base_constraints, pages, line)
            future.add_done_callback(callback)

        pool.shutdown(wait=True)
示例#16
0
def thead_collect():
    results = MONGO.select('albums', {'collected': {'$ne': 1}}, limit=200)
    # thead_pool = ThreadPoolExecutor(5)
    thead_pool = ProcessPoolExecutor(5)

    while results:
        for result in results:
            baby = CollectBaby(result)
            # magic()
            thead_pool.submit(baby.collect)
            # baby.collect()

        results = MONGO.select('albums', {
            '_id': {
                '$gt': result.get('_id')
            },
            'collected': {
                '$ne': 1
            }
        },
                               limit=200)

    thead_pool.shutdown(wait=True)
示例#17
0
async def test_endpoint():
    print(f"main process: {os.getpid()}")

    START_TIME = time.time()
    STOP_TIME = START_TIME + 2

    pool = ProcessPoolExecutor(max_workers=3)
    futures = [
        pool.submit(simple_routine, [1]),
        pool.submit(simple_routine, [1]),
        pool.submit(simple_routine, [10]),
    ]
    results = []
    for fut in futures:
        remains = max(STOP_TIME - time.time(), 0)
        try:
            results.append(fut.get(timeout = remains))
        except:
            results.append("not done")

    # terminate the entire pool
    pool.shutdown(wait=False)
    print("exiting at: ", int(time.time() - START_TIME))
    return "True"
示例#18
0
class Blockchain(BlockchainInterface):
    constants: ConsensusConstants
    constants_json: Dict

    # peak of the blockchain
    _peak_height: Optional[uint32]
    # All blocks in peak path are guaranteed to be included, can include orphan blocks
    __block_records: Dict[bytes32, BlockRecord]
    # all hashes of blocks in block_record by height, used for garbage collection
    __heights_in_cache: Dict[uint32, Set[bytes32]]
    # Defines the path from genesis to the peak, no orphan blocks
    __height_to_hash: Dict[uint32, bytes32]
    # All sub-epoch summaries that have been included in the blockchain from the beginning until and including the peak
    # (height_included, SubEpochSummary). Note: ONLY for the blocks in the path to the peak
    __sub_epoch_summaries: Dict[uint32, SubEpochSummary] = {}
    # Unspent Store
    coin_store: CoinStore
    # Store
    block_store: BlockStore
    # Used to verify blocks in parallel
    pool: ProcessPoolExecutor
    # Set holding seen compact proofs, in order to avoid duplicates.
    _seen_compact_proofs: Set[Tuple[VDFInfo, uint32]]

    # Whether blockchain is shut down or not
    _shut_down: bool

    # Lock to prevent simultaneous reads and writes
    lock: asyncio.Lock

    @staticmethod
    async def create(
        coin_store: CoinStore,
        block_store: BlockStore,
        consensus_constants: ConsensusConstants,
    ):
        """
        Initializes a blockchain with the BlockRecords from disk, assuming they have all been
        validated. Uses the genesis block given in override_constants, or as a fallback,
        in the consensus constants config.
        """
        self = Blockchain()
        self.lock = asyncio.Lock()  # External lock handled by full node
        cpu_count = multiprocessing.cpu_count()
        if cpu_count > 61:
            cpu_count = 61  # Windows Server 2016 has an issue https://bugs.python.org/issue26903
        num_workers = max(cpu_count - 2, 1)
        self.pool = ProcessPoolExecutor(max_workers=num_workers)
        log.info(f"Started {num_workers} processes for block validation")

        self.constants = consensus_constants
        self.coin_store = coin_store
        self.block_store = block_store
        self.constants_json = recurse_jsonify(dataclasses.asdict(self.constants))
        self._shut_down = False
        await self._load_chain_from_store()
        self._seen_compact_proofs = set()
        return self

    def shut_down(self):
        self._shut_down = True
        self.pool.shutdown(wait=True)

    async def _load_chain_from_store(self) -> None:
        """
        Initializes the state of the Blockchain class from the database.
        """
        height_to_hash, sub_epoch_summaries = await self.block_store.get_peak_height_dicts()
        self.__height_to_hash = height_to_hash
        self.__sub_epoch_summaries = sub_epoch_summaries
        self.__block_records = {}
        self.__heights_in_cache = {}
        block_records, peak = await self.block_store.get_block_records_close_to_peak(self.constants.BLOCKS_CACHE_SIZE)
        for block in block_records.values():
            self.add_block_record(block)

        if len(block_records) == 0:
            assert peak is None
            self._peak_height = None
            return

        assert peak is not None
        self._peak_height = self.block_record(peak).height
        assert len(self.__height_to_hash) == self._peak_height + 1

    def get_peak(self) -> Optional[BlockRecord]:
        """
        Return the peak of the blockchain
        """
        if self._peak_height is None:
            return None
        return self.height_to_block_record(self._peak_height)

    async def get_full_peak(self) -> Optional[FullBlock]:
        if self._peak_height is None:
            return None
        """ Return list of FullBlocks that are peaks"""
        block = await self.block_store.get_full_block(self.height_to_hash(self._peak_height))
        assert block is not None
        return block

    async def get_full_block(self, header_hash: bytes32) -> Optional[FullBlock]:
        return await self.block_store.get_full_block(header_hash)

    async def receive_block(
        self,
        block: FullBlock,
        pre_validation_result: Optional[PreValidationResult] = None,
        fork_point_with_peak: Optional[uint32] = None,
        summaries_to_check: List[SubEpochSummary] = None,  # passed only on long sync
    ) -> Tuple[ReceiveBlockResult, Optional[Err], Optional[uint32]]:
        """
        This method must be called under the blockchain lock
        Adds a new block into the blockchain, if it's valid and connected to the current
        blockchain, regardless of whether it is the child of a head, or another block.
        Returns a header if block is added to head. Returns an error if the block is
        invalid. Also returns the fork height, in the case of a new peak.
        """
        genesis: bool = block.height == 0

        if self.contains_block(block.header_hash):
            return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None

        if not self.contains_block(block.prev_header_hash) and not genesis:
            return (
                ReceiveBlockResult.DISCONNECTED_BLOCK,
                Err.INVALID_PREV_BLOCK_HASH,
                None,
            )

        if not genesis and (self.block_record(block.prev_header_hash).height + 1) != block.height:
            return ReceiveBlockResult.INVALID_BLOCK, Err.INVALID_HEIGHT, None

        npc_result: Optional[NPCResult] = None
        if pre_validation_result is None:
            if block.height == 0:
                prev_b: Optional[BlockRecord] = None
            else:
                prev_b = self.block_record(block.prev_header_hash)
            sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty(
                self.constants, len(block.finished_sub_slots) > 0, prev_b, self
            )

            if block.is_transaction_block():
                if block.transactions_generator is not None:
                    try:
                        block_generator: Optional[BlockGenerator] = await self.get_block_generator(block)
                    except ValueError:
                        return ReceiveBlockResult.INVALID_BLOCK, Err.GENERATOR_REF_HAS_NO_GENERATOR, None
                    assert block_generator is not None and block.transactions_info is not None
                    npc_result = get_name_puzzle_conditions(
                        block_generator, min(self.constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), False
                    )
                    removals, tx_additions = tx_removals_and_additions(npc_result.npc_list)
                else:
                    removals, tx_additions = [], []
                header_block = get_block_header(block, tx_additions, removals)
            else:
                npc_result = None
                header_block = get_block_header(block, [], [])

            required_iters, error = validate_finished_header_block(
                self.constants,
                self,
                header_block,
                False,
                difficulty,
                sub_slot_iters,
            )

            if error is not None:
                return ReceiveBlockResult.INVALID_BLOCK, error.code, None
        else:
            npc_result = pre_validation_result.npc_result
            required_iters = pre_validation_result.required_iters
            assert pre_validation_result.error is None
        assert required_iters is not None
        error_code, _ = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            block.height,
            npc_result,
            fork_point_with_peak,
            self.get_block_generator,
        )
        if error_code is not None:
            return ReceiveBlockResult.INVALID_BLOCK, error_code, None

        block_record = block_to_block_record(
            self.constants,
            self,
            required_iters,
            block,
            None,
        )
        # Always add the block to the database
        async with self.block_store.db_wrapper.lock:
            try:
                # Perform the DB operations to update the state, and rollback if something goes wrong
                await self.block_store.db_wrapper.begin_transaction()
                await self.block_store.add_full_block(block, block_record)
                fork_height, peak_height, records = await self._reconsider_peak(
                    block_record, genesis, fork_point_with_peak, npc_result
                )
                await self.block_store.db_wrapper.commit_transaction()

                # Then update the memory cache. It is important that this task is not cancelled and does not throw
                self.add_block_record(block_record)
                for fetched_block_record in records:
                    self.__height_to_hash[fetched_block_record.height] = fetched_block_record.header_hash
                    if fetched_block_record.sub_epoch_summary_included is not None:
                        self.__sub_epoch_summaries[
                            fetched_block_record.height
                        ] = fetched_block_record.sub_epoch_summary_included
                if peak_height is not None:
                    self._peak_height = peak_height
                self.block_store.cache_block(block)
            except BaseException:
                await self.block_store.db_wrapper.rollback_transaction()
                raise
        if fork_height is not None:
            return ReceiveBlockResult.NEW_PEAK, None, fork_height
        else:
            return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None

    async def _reconsider_peak(
        self,
        block_record: BlockRecord,
        genesis: bool,
        fork_point_with_peak: Optional[uint32],
        npc_result: Optional[NPCResult],
    ) -> Tuple[Optional[uint32], Optional[uint32], List[BlockRecord]]:
        """
        When a new block is added, this is called, to check if the new block is the new peak of the chain.
        This also handles reorgs by reverting blocks which are not in the heaviest chain.
        It returns the height of the fork between the previous chain and the new chain, or returns
        None if there was no update to the heaviest chain.
        """
        peak = self.get_peak()
        if genesis:
            if peak is None:
                block: Optional[FullBlock] = await self.block_store.get_full_block(block_record.header_hash)
                assert block is not None

                if npc_result is not None:
                    tx_removals, tx_additions = tx_removals_and_additions(npc_result.npc_list)
                else:
                    tx_removals, tx_additions = [], []
                await self.coin_store.new_block(block, tx_additions, tx_removals)
                await self.block_store.set_peak(block.header_hash)
                return uint32(0), uint32(0), [block_record]
            return None, None, []

        assert peak is not None
        if block_record.weight > peak.weight:
            # Find the fork. if the block is just being appended, it will return the peak
            # If no blocks in common, returns -1, and reverts all blocks
            if block_record.prev_hash == peak.header_hash:
                fork_height: int = peak.height
            elif fork_point_with_peak is not None:
                fork_height = fork_point_with_peak
            else:
                fork_height = find_fork_point_in_chain(self, block_record, peak)

            if block_record.prev_hash != peak.header_hash:
                await self.coin_store.rollback_to_block(fork_height)
            # Rollback sub_epoch_summaries
            heights_to_delete = []
            for ses_included_height in self.__sub_epoch_summaries.keys():
                if ses_included_height > fork_height:
                    heights_to_delete.append(ses_included_height)
            for height in heights_to_delete:
                log.info(f"delete ses at height {height}")
                del self.__sub_epoch_summaries[height]

            # Collect all blocks from fork point to new peak
            blocks_to_add: List[Tuple[FullBlock, BlockRecord]] = []
            curr = block_record.header_hash

            while fork_height < 0 or curr != self.height_to_hash(uint32(fork_height)):
                fetched_full_block: Optional[FullBlock] = await self.block_store.get_full_block(curr)
                fetched_block_record: Optional[BlockRecord] = await self.block_store.get_block_record(curr)
                assert fetched_full_block is not None
                assert fetched_block_record is not None
                blocks_to_add.append((fetched_full_block, fetched_block_record))
                if fetched_full_block.height == 0:
                    # Doing a full reorg, starting at height 0
                    break
                curr = fetched_block_record.prev_hash

            records_to_add = []
            for fetched_full_block, fetched_block_record in reversed(blocks_to_add):
                records_to_add.append(fetched_block_record)
                if fetched_block_record.is_transaction_block:
                    if fetched_block_record.header_hash == block_record.header_hash:
                        tx_removals, tx_additions = await self.get_tx_removals_and_additions(
                            fetched_full_block, npc_result
                        )
                    else:
                        tx_removals, tx_additions = await self.get_tx_removals_and_additions(fetched_full_block, None)
                    await self.coin_store.new_block(fetched_full_block, tx_additions, tx_removals)

            # Changes the peak to be the new peak
            await self.block_store.set_peak(block_record.header_hash)
            return uint32(max(fork_height, 0)), block_record.height, records_to_add

        # This is not a heavier block than the heaviest we have seen, so we don't change the coin set
        return None, None, []

    async def get_tx_removals_and_additions(
        self, block: FullBlock, npc_result: Optional[NPCResult] = None
    ) -> Tuple[List[bytes32], List[Coin]]:
        if block.is_transaction_block():
            if block.transactions_generator is not None:
                if npc_result is None:
                    block_generator: Optional[BlockGenerator] = await self.get_block_generator(block)
                    assert block_generator is not None
                    npc_result = get_name_puzzle_conditions(block_generator, self.constants.MAX_BLOCK_COST_CLVM, False)
                tx_removals, tx_additions = tx_removals_and_additions(npc_result.npc_list)
                return tx_removals, tx_additions
            else:
                return [], []
        else:
            return [], []

    def get_next_difficulty(self, header_hash: bytes32, new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.DIFFICULTY_STARTING

        return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot, curr, self)[1]

    def get_next_slot_iters(self, header_hash: bytes32, new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.SUB_SLOT_ITERS_STARTING
        return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot, curr, self)[0]

    async def get_sp_and_ip_sub_slots(
        self, header_hash: bytes32
    ) -> Optional[Tuple[Optional[EndOfSubSlotBundle], Optional[EndOfSubSlotBundle]]]:
        block: Optional[FullBlock] = await self.block_store.get_full_block(header_hash)
        if block is None:
            return None
        curr_br: BlockRecord = self.block_record(block.header_hash)
        is_overflow = curr_br.overflow

        curr: Optional[FullBlock] = block
        assert curr is not None
        while True:
            if curr_br.first_in_sub_slot:
                curr = await self.block_store.get_full_block(curr_br.header_hash)
                assert curr is not None
                break
            if curr_br.height == 0:
                break
            curr_br = self.block_record(curr_br.prev_hash)

        if len(curr.finished_sub_slots) == 0:
            # This means we got to genesis and still no sub-slots
            return None, None

        ip_sub_slot = curr.finished_sub_slots[-1]

        if not is_overflow:
            # Pos sub-slot is the same as infusion sub slot
            return None, ip_sub_slot

        if len(curr.finished_sub_slots) > 1:
            # Have both sub-slots
            return curr.finished_sub_slots[-2], ip_sub_slot

        prev_curr: Optional[FullBlock] = await self.block_store.get_full_block(curr.prev_header_hash)
        if prev_curr is None:
            assert curr.height == 0
            prev_curr = curr
            prev_curr_br = self.block_record(curr.header_hash)
        else:
            prev_curr_br = self.block_record(curr.prev_header_hash)
        assert prev_curr_br is not None
        while prev_curr_br.height > 0:
            if prev_curr_br.first_in_sub_slot:
                prev_curr = await self.block_store.get_full_block(prev_curr_br.header_hash)
                assert prev_curr is not None
                break
            prev_curr_br = self.block_record(prev_curr_br.prev_hash)

        if len(prev_curr.finished_sub_slots) == 0:
            return None, ip_sub_slot
        return prev_curr.finished_sub_slots[-1], ip_sub_slot

    def get_recent_reward_challenges(self) -> List[Tuple[bytes32, uint128]]:
        peak = self.get_peak()
        if peak is None:
            return []
        recent_rc: List[Tuple[bytes32, uint128]] = []
        curr: Optional[BlockRecord] = peak
        while curr is not None and len(recent_rc) < 2 * self.constants.MAX_SUB_SLOT_BLOCKS:
            if curr != peak:
                recent_rc.append((curr.reward_infusion_new_challenge, curr.total_iters))
            if curr.first_in_sub_slot:
                assert curr.finished_reward_slot_hashes is not None
                sub_slot_total_iters = curr.ip_sub_slot_total_iters(self.constants)
                # Start from the most recent
                for rc in reversed(curr.finished_reward_slot_hashes):
                    recent_rc.append((rc, sub_slot_total_iters))
                    sub_slot_total_iters = uint128(sub_slot_total_iters - curr.sub_slot_iters)
            curr = self.try_block_record(curr.prev_hash)
        return list(reversed(recent_rc))

    async def validate_unfinished_block(
        self, block: UnfinishedBlock, skip_overflow_ss_validation=True
    ) -> PreValidationResult:
        if (
            not self.contains_block(block.prev_header_hash)
            and not block.prev_header_hash == self.constants.GENESIS_CHALLENGE
        ):
            return PreValidationResult(uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None)

        unfinished_header_block = UnfinishedHeaderBlock(
            block.finished_sub_slots,
            block.reward_chain_block,
            block.challenge_chain_sp_proof,
            block.reward_chain_sp_proof,
            block.foliage,
            block.foliage_transaction_block,
            b"",
        )
        prev_b = self.try_block_record(unfinished_header_block.prev_header_hash)
        sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty(
            self.constants, len(unfinished_header_block.finished_sub_slots) > 0, prev_b, self
        )
        required_iters, error = validate_unfinished_header_block(
            self.constants,
            self,
            unfinished_header_block,
            False,
            difficulty,
            sub_slot_iters,
            skip_overflow_ss_validation,
        )

        if error is not None:
            return PreValidationResult(uint16(error.code.value), None, None)

        prev_height = (
            -1
            if block.prev_header_hash == self.constants.GENESIS_CHALLENGE
            else self.block_record(block.prev_header_hash).height
        )

        npc_result = None
        if block.transactions_generator is not None:
            assert block.transactions_info is not None
            try:
                block_generator: Optional[BlockGenerator] = await self.get_block_generator(block)
            except ValueError:
                return PreValidationResult(uint16(Err.GENERATOR_REF_HAS_NO_GENERATOR.value), None, None)
            if block_generator is None:
                return PreValidationResult(uint16(Err.GENERATOR_REF_HAS_NO_GENERATOR.value), None, None)
            npc_result = get_name_puzzle_conditions(
                block_generator, min(self.constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), False
            )
        error_code, cost_result = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            uint32(prev_height + 1),
            npc_result,
            None,
            self.get_block_generator,
        )

        if error_code is not None:
            return PreValidationResult(uint16(error_code.value), None, None)

        return PreValidationResult(None, required_iters, cost_result)

    async def pre_validate_blocks_multiprocessing(
        self, blocks: List[FullBlock], npc_results: Dict[uint32, NPCResult], batch_size: int = 4
    ) -> Optional[List[PreValidationResult]]:
        return await pre_validate_blocks_multiprocessing(
            self.constants,
            self.constants_json,
            self,
            blocks,
            self.pool,
            True,
            npc_results,
            self.get_block_generator,
            batch_size,
        )

    def contains_block(self, header_hash: bytes32) -> bool:
        """
        True if we have already added this block to the chain. This may return false for orphan blocks
        that we have added but no longer keep in memory.
        """
        return header_hash in self.__block_records

    def block_record(self, header_hash: bytes32) -> BlockRecord:
        return self.__block_records[header_hash]

    def height_to_block_record(self, height: uint32) -> BlockRecord:
        header_hash = self.height_to_hash(height)
        return self.block_record(header_hash)

    def get_ses_heights(self) -> List[uint32]:
        return sorted(self.__sub_epoch_summaries.keys())

    def get_ses(self, height: uint32) -> SubEpochSummary:
        return self.__sub_epoch_summaries[height]

    def height_to_hash(self, height: uint32) -> Optional[bytes32]:
        return self.__height_to_hash[height]

    def contains_height(self, height: uint32) -> bool:
        return height in self.__height_to_hash

    def get_peak_height(self) -> Optional[uint32]:
        return self._peak_height

    async def warmup(self, fork_point: uint32):
        """
        Loads blocks into the cache. The blocks loaded include all blocks from
        fork point - BLOCKS_CACHE_SIZE up to and including the fork_point.

        Args:
            fork_point: the last block height to load in the cache

        """
        if self._peak_height is None:
            return
        block_records = await self.block_store.get_block_records_in_range(
            max(fork_point - self.constants.BLOCKS_CACHE_SIZE, uint32(0)), fork_point
        )
        for block_record in block_records.values():
            self.add_block_record(block_record)

    def clean_block_record(self, height: int):
        """
        Clears all block records in the cache which have block_record < height.
        Args:
            height: Minimum height that we need to keep in the cache
        """
        if height < 0:
            return
        blocks_to_remove = self.__heights_in_cache.get(uint32(height), None)
        while blocks_to_remove is not None and height >= 0:
            for header_hash in blocks_to_remove:
                del self.__block_records[header_hash]  # remove from blocks
            del self.__heights_in_cache[uint32(height)]  # remove height from heights in cache

            height = height - 1
            blocks_to_remove = self.__heights_in_cache.get(uint32(height), None)

    def clean_block_records(self):
        """
        Cleans the cache so that we only maintain relevant blocks. This removes
        block records that have height < peak - BLOCKS_CACHE_SIZE.
        These blocks are necessary for calculating future difficulty adjustments.
        """

        if len(self.__block_records) < self.constants.BLOCKS_CACHE_SIZE:
            return

        peak = self.get_peak()
        assert peak is not None
        if peak.height - self.constants.BLOCKS_CACHE_SIZE < 0:
            return
        self.clean_block_record(peak.height - self.constants.BLOCKS_CACHE_SIZE)

    async def get_block_records_in_range(self, start: int, stop: int) -> Dict[bytes32, BlockRecord]:
        return await self.block_store.get_block_records_in_range(start, stop)

    async def get_header_blocks_in_range(self, start: int, stop: int) -> Dict[bytes32, HeaderBlock]:
        hashes = []
        for height in range(start, stop + 1):
            if self.contains_height(uint32(height)):
                header_hash: bytes32 = self.height_to_hash(uint32(height))
                hashes.append(header_hash)

        blocks: List[FullBlock] = await self.block_store.get_blocks_by_hash(hashes)
        header_blocks: Dict[bytes32, HeaderBlock] = {}

        for block in blocks:
            if self.height_to_hash(block.height) != block.header_hash:
                raise ValueError(f"Block at {block.header_hash} is no longer in the blockchain (it's in a fork)")
            tx_additions: List[CoinRecord] = [
                c for c in (await self.coin_store.get_coins_added_at_height(block.height)) if not c.coinbase
            ]
            removed: List[CoinRecord] = await self.coin_store.get_coins_removed_at_height(block.height)
            header = get_block_header(
                block, [record.coin for record in tx_additions], [record.coin.name() for record in removed]
            )
            header_blocks[header.header_hash] = header

        return header_blocks

    async def get_header_block_by_height(self, height: int, header_hash: bytes32) -> Optional[HeaderBlock]:
        header_dict: Dict[bytes32, HeaderBlock] = await self.get_header_blocks_in_range(height, height)
        if len(header_dict) == 0:
            return None
        if header_hash not in header_dict:
            return None
        return header_dict[header_hash]

    async def get_block_records_at(self, heights: List[uint32]) -> List[BlockRecord]:
        """
        gets block records by height (only blocks that are part of the chain)
        """
        hashes = []
        for height in heights:
            hashes.append(self.height_to_hash(height))
        return await self.block_store.get_block_records_by_hash(hashes)

    async def get_block_record_from_db(self, header_hash: bytes32) -> Optional[BlockRecord]:
        if header_hash in self.__block_records:
            return self.__block_records[header_hash]
        return await self.block_store.get_block_record(header_hash)

    def remove_block_record(self, header_hash: bytes32):
        sbr = self.block_record(header_hash)
        del self.__block_records[header_hash]
        self.__heights_in_cache[sbr.height].remove(header_hash)

    def add_block_record(self, block_record: BlockRecord):
        """
        Adds a block record to the cache.
        """

        self.__block_records[block_record.header_hash] = block_record
        if block_record.height not in self.__heights_in_cache.keys():
            self.__heights_in_cache[block_record.height] = set()
        self.__heights_in_cache[block_record.height].add(block_record.header_hash)

    async def persist_sub_epoch_challenge_segments(
        self, ses_block_hash: bytes32, segments: List[SubEpochChallengeSegment]
    ):
        return await self.block_store.persist_sub_epoch_challenge_segments(ses_block_hash, segments)

    async def get_sub_epoch_challenge_segments(
        self,
        ses_block_hash: bytes32,
    ) -> Optional[List[SubEpochChallengeSegment]]:
        segments: Optional[List[SubEpochChallengeSegment]] = await self.block_store.get_sub_epoch_challenge_segments(
            ses_block_hash
        )
        if segments is None:
            return None
        return segments

    # Returns 'True' if the info is already in the set, otherwise returns 'False' and stores it.
    def seen_compact_proofs(self, vdf_info: VDFInfo, height: uint32) -> bool:
        pot_tuple = (vdf_info, height)
        if pot_tuple in self._seen_compact_proofs:
            return True
        # Periodically cleanup to keep size small. TODO: make this smarter, like FIFO.
        if len(self._seen_compact_proofs) > 10000:
            self._seen_compact_proofs.clear()
        self._seen_compact_proofs.add(pot_tuple)
        return False

    async def get_block_generator(
        self, block: Union[FullBlock, UnfinishedBlock], additional_blocks=None
    ) -> Optional[BlockGenerator]:
        if additional_blocks is None:
            additional_blocks = {}
        ref_list = block.transactions_generator_ref_list
        if block.transactions_generator is None:
            assert len(ref_list) == 0
            return None
        if len(ref_list) == 0:
            return BlockGenerator(block.transactions_generator, [])

        result: List[GeneratorArg] = []
        previous_block_hash = block.prev_header_hash
        if (
            self.try_block_record(previous_block_hash)
            and self.height_to_hash(self.block_record(previous_block_hash).height) == previous_block_hash
        ):
            # We are not in a reorg, no need to look up alternate header hashes (we can get them from height_to_hash)
            for ref_height in block.transactions_generator_ref_list:
                header_hash = self.height_to_hash(ref_height)
                ref_block = await self.get_full_block(header_hash)
                assert ref_block is not None
                if ref_block.transactions_generator is None:
                    raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator))
        else:
            # First tries to find the blocks in additional_blocks
            reorg_chain: Dict[uint32, FullBlock] = {}
            curr: Union[FullBlock, UnfinishedBlock] = block
            additional_height_dict = {}
            while curr.prev_header_hash in additional_blocks:
                prev: FullBlock = additional_blocks[curr.prev_header_hash]
                additional_height_dict[prev.height] = prev
                if isinstance(curr, FullBlock):
                    assert curr.height == prev.height + 1
                reorg_chain[prev.height] = prev
                curr = prev

            peak: Optional[BlockRecord] = self.get_peak()
            if self.contains_block(curr.prev_header_hash) and peak is not None:
                # Then we look up blocks up to fork point one at a time, backtracking
                previous_block_hash = curr.prev_header_hash
                prev_block_record = await self.block_store.get_block_record(previous_block_hash)
                prev_block = await self.block_store.get_full_block(previous_block_hash)
                assert prev_block is not None
                assert prev_block_record is not None
                fork = find_fork_point_in_chain(self, peak, prev_block_record)
                curr_2: Optional[FullBlock] = prev_block
                assert curr_2 is not None and isinstance(curr_2, FullBlock)
                reorg_chain[curr_2.height] = curr_2
                while curr_2.height > fork and curr_2.height > 0:
                    curr_2 = await self.block_store.get_full_block(curr_2.prev_header_hash)
                    assert curr_2 is not None
                    reorg_chain[curr_2.height] = curr_2

            for ref_height in block.transactions_generator_ref_list:
                if ref_height in reorg_chain:
                    ref_block = reorg_chain[ref_height]
                    assert ref_block is not None
                    if ref_block.transactions_generator is None:
                        raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                    result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator))
                else:
                    if ref_height in additional_height_dict:
                        ref_block = additional_height_dict[ref_height]
                    else:
                        header_hash = self.height_to_hash(ref_height)
                        ref_block = await self.get_full_block(header_hash)
                    assert ref_block is not None
                    if ref_block.transactions_generator is None:
                        raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                    result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator))
        assert len(result) == len(ref_list)
        return BlockGenerator(block.transactions_generator, result)
示例#19
0
class BackgroundResourceProbe(AbstractProbe):
    """
    Background probe: cpu, memory, heap and JMX metrics

    TODO Refactor this
    """

    jmx = None
    executor = None
    futures = {}
    interrupt = False

    def __init__(self, probe_config):
        super().__init__(probe_config)

        self.jmx = None

    def validate_config(self):
        pass

    def start(self):
        """
        Start background probe (Separate process created)
        """
        super().start()

        # create result for current version
        self.results[self.version] = {}

        # remove previous lock file
        if os.path.isfile('lock'):
            os.remove('lock')

        # create lock file
        with open('lock', 'w') as f:
            pass

        # Create PoolExecutor and submit bs_probe in it
        # Can be launched in debug mode - with local ThreadPool. In default separate process will be launched.
        #
        # Using in default mode (with ProcessPoolExecutor):
        # Only default types can be passed into submit() as args (dict, list, set, int, string)
        # But there is no chance to pass class instance into separate process (e.g. current SshPool cannot be passed)
        #
        # Also self.watch_thread() method should be static (because self arg is passed by default in instance method)

        if 'debug_background_probe' in self.test_class.config:
            self.executor = ThreadPoolExecutor(
                max_workers=len(self.probe_config['probes']))
        else:
            self.executor = ProcessPoolExecutor(
                max_workers=len(self.probe_config['probes']))

        for probe_name in self.probe_config['probes']:
            if probe_name == 'cpu_mem':
                self.futures['cpu_mem'] = self.executor.submit(
                    self.cpu_mem_thread_method,
                    self.ignite.get_alive_default_nodes(), self.ignite.nodes,
                    self.test_class.config['ssh'])
            elif probe_name == 'heap':
                self.futures['heap'] = self.executor.submit(
                    self.heap_thread_method,
                    self.ignite.get_alive_default_nodes(), self.ignite.nodes,
                    self.test_class.config['ssh'])
            elif probe_name == 'jmx':
                assert 'jmx_metrics' in self.probe_config, 'jmx_metrics should be defined if jmx background probe used'

                # start jmx utility wo gateway
                self.jmx = JmxUtility(self.ignite, start_gateway=False)
                self.jmx.start_utility()
                jmx_node_id = int(self.jmx.node_id)

                self.futures['jmx'] = self.executor.submit(
                    self.jmx_thread_method,
                    self.ignite.get_alive_default_nodes(), self.ignite.nodes,
                    jmx_node_id, self.probe_config['jmx_metrics'])
            else:
                raise TidenException('Unknown probe name %s' % probe_name)

    def stop(self, **kwargs):
        """
        Stop background probe

        NB! Do not move fut.results vs jmx node killing. This may lead to py4j errors in log.
        """
        super().stop()

        # write 1 into lock file to stop all probes
        with open('lock', 'w') as f:
            f.write('1')

        # get result from process threads (this code guarantee that jmx is not usable anymore)
        sleep(10)

        for name, fut in self.futures.items():
            if fut.exception():
                log_print("Failed to evaluate probe %s, %s" %
                          (name, fut.exception()),
                          color='red')
            else:
                self.results[self.version][name] = fut.result()

        # kill utility using ignite api (jmx gateway already down in probe thread)
        if self.jmx:
            self.jmx.kill_utility()
            # self.ignite.kill_node(self.jmx.node_id)

        # shutdown executor
        self.executor.shutdown(wait=True)

        # remove lock file
        os.remove('lock')

    def is_passed(self, **kwargs):
        """
        Just print results

        :param kwargs: None
        :return: always True
        """
        return True

    @staticmethod
    def cpu_mem_thread_method(nodes_to_monitor,
                              ignite_nodes,
                              ssh_config,
                              timeout=5):
        """
        probe thread that collects cpu,mem from nodes_to_monitor

        Command to collect: "ps -p PID -o pid,%%cpu,%%mem"

        :param nodes_to_monitor: nodes that we want to monitor (server nodes in this example)
        :param ignite_nodes: nodes from current Ignite app (need to get PID)
        :param ssh_config: config['ssh_config'] from tiden config (Need to initialize SshPool)
        :param timeout: timeout between data collect
        :return: collected results ('default' python type)
        """
        ssh = SshPool(ssh_config)
        ssh.connect()

        cpu_mem_result = {}

        with open('lock', 'r') as f:
            while True:
                if f.read(1) == '1':
                    log_print("Background probe CPU has been interrupted")
                    break

                commands = {}
                node_ids_to_pid = {}

                for node_ids in nodes_to_monitor:
                    node_ids_to_pid[node_ids] = ignite_nodes[node_ids]['PID']

                for node_idx in nodes_to_monitor:
                    host = ignite_nodes[node_idx]['host']
                    if commands.get(host) is None:
                        commands[host] = [
                            'ps -p %s -o pid,%%cpu,%%mem' %
                            ignite_nodes[node_idx]['PID']
                        ]
                    else:
                        commands[host].append('ps -p %s -o pid,%%cpu,%%mem' %
                                              ignite_nodes[node_idx]['PID'])

                results = ssh.exec(commands)

                results_parsed = {}
                for host in results.keys():
                    result = results[host][0]

                    search = re.search('(\d+)\s+?(\d+.?\d?)\s+?(\d+.?\d?)',
                                       result)

                    if search:
                        node_id = 0
                        for node_id, pid in node_ids_to_pid.items():
                            if pid == int(search.group(1)):
                                node_id = node_id
                                break

                        results_parsed[node_id] = (float(search.group(2)),
                                                   float(search.group(3)))
                    else:
                        continue

                cpu_mem_result[get_current_time()] = results_parsed

                sleep(timeout)

        return cpu_mem_result

    @staticmethod
    def heap_thread_method(nodes_to_monitor,
                           ignite_nodes,
                           ssh_config,
                           timeout=5):
        """
        probe thread that collects JVM Heap usage from nodes_to_monitor

        Command to collect: "jcmd PID GC.class_histogram"
        This command prints following text:

        "PID:
        1. JAVA_OBJECT_NUM JAVA_OBJECT_SIZE JAVA_OBJECT_NAME
        ...
        N.
        Total TOTAL_OBJECTS TOTAL_OBJECTS_SIZE"

        So we need to collect PID (to match it to node) and TOTAL_OBJECTS_SIZE from that output.

        :param nodes_to_monitor: nodes that we want to monitor (server nodes in this example)
        :param ignite_nodes: nodes from current Ignite app (need to get PID)
        :param ssh_config: config['ssh_config'] from tiden config (Need to initialize SshPool)
        :return: collected results ('default' python type)
        """
        ssh = SshPool(ssh_config)
        ssh.connect()

        heap_result = {}

        try:
            with open('lock', 'r') as f:
                while True:
                    if f.read(1) == '1':
                        log_print("Background probe HEAP has been interrupted")
                        break

                    commands = {}
                    node_ids_to_pid = {}

                    for node_ids in nodes_to_monitor:
                        node_ids_to_pid[node_ids] = ignite_nodes[node_ids][
                            'PID']

                    for node_idx in nodes_to_monitor:
                        host = ignite_nodes[node_idx]['host']
                        if commands.get(host) is None:
                            commands[host] = [
                                'jcmd %s GC.class_histogram' %
                                ignite_nodes[node_idx]['PID']
                            ]
                        else:
                            commands[host].append(
                                'jcmd %s GC.class_histogram' %
                                ignite_nodes[node_idx]['PID'])

                    results = ssh.exec(commands)

                    results_parsed = {}
                    for host in results.keys():
                        result = results[host][0]

                        findall = re.compile(
                            '(\d+):\n|Total\s+\d+\s+(\d+)').findall(result)

                        # findall will return 2d array: [['PID', ''], [''] ['TOTAL_HEAP_USAGE']]
                        # todo maybe there is a better way to get this
                        if findall:
                            node_id = 0
                            for node_id, pid in node_ids_to_pid.items():
                                if pid == int(findall[0][0]):
                                    node_id = node_id
                                    break

                            try:
                                results_parsed[node_id] = (int(findall[1][1]))
                            except Exception:
                                results_parsed[node_id] = 0
                        else:
                            continue

                    heap_result[get_current_time()] = results_parsed

                    sleep(timeout)
        except Exception:
            log_print(traceback.format_exc())

        return heap_result

    @staticmethod
    def jmx_thread_method(nodes_to_monitor,
                          ignite_nodes,
                          jmx_node_id,
                          metrics_to_collect,
                          timeout=5):
        """
        probe thread that collects JMX metrics from specified nodes

        Uses mocked JMXUtility (does not start new instance, just use existing methods)
        We need to pass nothing to create this instance just override nodes, gateway and service

        :param nodes_to_monitor: nodes that we want to monitor (server nodes in this example)
        :param ignite_nodes: nodes from current Ignite app (need to get PID)
        :param jmx_node_id: jmx node id from tiden.ignite.nodes
        :param metrics_to_collect: {'attr': {'grp': 'Group', 'bean': 'Bean', 'attribute': 'Attr'}, ...}
        :param timeout: timeout to collect metrics
        :return: collected results ('default' python type)
        """
        # Close connections and shutdown gateway properly
        jmx_metric = {}

        jmx = None
        try:
            jmx = JmxUtility()
            jmx.initialize_manually(jmx_node_id, ignite_nodes)

            with open('lock', 'r') as f:
                while True:
                    if f.read(1) == '1':
                        log_print("Background probe JMX has been interrupted")
                        break

                    current_time = get_current_time()
                    for node_idx in nodes_to_monitor:
                        if current_time not in jmx_metric:
                            jmx_metric[current_time] = {}

                        if node_idx not in jmx_metric[current_time]:
                            jmx_metric[current_time][node_idx] = {}

                        for name, metric in metrics_to_collect.items():
                            try:
                                string_value = \
                                    jmx.get_attributes(node_idx,
                                                       metric['grp'],
                                                       metric['bean'],
                                                       metric['attribute'],
                                                       )[metric['attribute']]

                                if metric['type'] == 'int':
                                    jmx_metric[current_time][node_idx][
                                        name] = int(string_value)
                                else:
                                    jmx_metric[current_time][node_idx][
                                        name] = string_value
                            except Exception:
                                jmx_metric[current_time][node_idx][name] = None

                        sleep(timeout)
        except Exception:
            log_print(traceback.format_exc())
        finally:
            # Close connections and shutdown gateway properly
            if jmx:
                jmx.kill_manually()

        return jmx_metric
class MediaEventHandler(FileSystemEventHandler):

    __LOG = None

    _CONFIG = ConverterConfig.get_instance()

    DEFAULT_MAX_PROCESSES = 2
    DEFAULT_CONVERTER = ConverterFactory.Converters.FFMPEG

    def __init__(self,
                 max_processes: int = DEFAULT_MAX_PROCESSES,
                 converter: ConverterFactory.Converters = DEFAULT_CONVERTER):
        super().__init__()

        MediaEventHandler.__LOG = LogManager.get_instance().get(
            LogManager.Logger.OBSERVER)
        self.__converter = ConverterFactory.get_type(converter)
        self.__executor = ProcessPoolExecutor(
            max_workers=max_processes,
            initializer=MediaEventHandler.__init_worker)

    @classmethod
    def __init_worker(cls) -> None:
        """
        Workaround for managing Python's bug: while on wait syscall, KeyboardInterrupt is not handled
        Prevent the child processes from ever receiving KeyboardInterrupt and leaving it
         completely up to the parent process to catch the interrupt and clean up
         the process pool.
        :author: John Reese, https://noswap.com/blog/python-multiprocessing-keyboardinterrupt
         and https://github.com/jreese/multiprocessing-keyboardinterrupt
        """
        signal.signal(signal.SIGINT, signal.SIG_IGN)

    def on_created(self, event: FileSystemEvent) -> None:
        super().on_created(event)
        try:
            Validation.is_file(event.src_path)
        except FileNotFoundError:
            MediaEventHandler.__LOG.debug(
                f"[SKIPPING] '{event.src_path}': not a file")
            return

        MediaEventHandler.__LOG.debug(f"[CREATED] '{event.src_path}'")

        fileout = self.__get_fileout_from(
            event.src_path, MediaEventHandler._CONFIG.media_out_folder,
            MediaEventHandler._CONFIG.media_out_format.get('format'))
        converter_object = MediaInfo(
            event.src_path,
            MediaEventHandler._CONFIG.media_in_converted_folder, fileout,
            MediaEventHandler._CONFIG.media_out_format)
        self.__executor.submit(self.__converter.execute, converter_object)

    def on_deleted(self, event: FileSystemEvent) -> None:
        super().on_deleted(event)
        MediaEventHandler.__LOG.debug(f"[DELETED] '{event.src_path}'")

    def shutdown(self):
        self.__executor.shutdown(wait=True)

    @classmethod
    def __get_fileout_from(cls, filein: str, dirout: str,
                           extension: str) -> str:
        path_filein = Path(filein)
        path_dirout = Path(dirout)
        return str(
            path_dirout.joinpath(
                path_filein.stem).with_suffix(f".{extension}"))
示例#21
0
def do_test3(workers):
    param = {"max_workers": workers}
    loop = asyncio.new_event_loop()

    lock = threading.Lock()
    tresult = []
    presult = []
    cresult = []

    pre_input1 = input_generator(workers, 0)
    pre_input2 = input_generator(workers, max(pre_input1))
    pre_input3 = input_generator(workers, max(pre_input2))

    def result_checker(list, lock, fut):
        with lock:
            try:
                list.append(fut.result())
            except Exception as e:
                list.append(e)

    texec = ThreadPoolExecutor(**param)
    pexec = ProcessPoolExecutor(**param)
    cexec = CoroutinePoolExecutor(**param, loop=loop)

    tstart = round(time.time()+1)
    input1 = [tstart + i for i in pre_input1]
    input2 = [tstart + i for i in pre_input2]
    input3 = [tstart + i for i in pre_input3]

    for x in input1:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))
    result_iter = texec.map(wake_at, input2)
    for x in input3:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))
    for x in result_iter:
        with lock:
            tresult.append(x)

    texec.shutdown(True)

    pstart = round(time.time() + _start_warm_up)
    input1 = [pstart + i for i in pre_input1]
    input2 = [pstart + i for i in pre_input2]
    input3 = [pstart + i for i in pre_input3]

    for x in input1:
        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))
    result_iter = pexec.map(wake_at, input2)
    for x in input3:
        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))
    for x in result_iter:
        with lock:
            presult.append(x)

    pexec.shutdown(True)

    cstart = round(time.time() + _start_warm_up)
    input1 = [cstart + i for i in pre_input1]
    input2 = [cstart + i for i in pre_input2]
    input3 = [cstart + i for i in pre_input3]

    async def async_main():
        for x in input1:
            future = cexec.submit(async_wake_at, x)
            future.add_done_callback(
                functools.partial(result_checker, cresult, lock))
        result_iter = cexec.map(async_wake_at, input2)
        for x in input3:
            future = cexec.submit(async_wake_at, x)
            future.add_done_callback(
                functools.partial(result_checker, cresult, lock))
        async for x in result_iter:
            with lock:
                cresult.append(x)
        await cexec.shutdown(False)

    loop.run_until_complete(async_main())

    try:
        loop.run_until_complete(cexec.shutdown(True))
        texec.shutdown(True)
        pexec.shutdown(True)
    finally:
        loop.close()

    tresult = [round((x - tstart) / _precision) for x in tresult]
    presult = [round((x - pstart) / _precision) for x in presult]
    cresult = [round((x - cstart) / _precision) for x in cresult]

    result = True
    for (t, p, c) in zip(tresult, presult, cresult):
        result = result and (t == p)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t,p,c)
            assert False
        result = result and (p == c)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (c == t)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
    return result
    offset = 1000 * index
    musics = sql.get_music_page(offset, 1000)
    print("index:", index, "offset:", offset, "artists :", len(musics))
    for item in musics:
        try:
            my_lyric_comment.saveComment(item['music_id'])
        except Exception as e:
            # 打印错误日志
            print(' internal  error : ' + str(e))
            # traceback.print_exc()
            time.sleep(5)


if __name__ == '__main__':
    print("======= 开始爬 评论 信息 ===========")
    startTime = datetime.datetime.now()
    print(startTime.strftime('%Y-%m-%d %H:%M:%S'))
    # 所有歌手数量
    musics_num = sql.get_all_music_num()
    # 批次
    batch = math.ceil(musics_num.get('num') / 1000.0)
    # 构建线程池
    pool = ProcessPoolExecutor(5)
    for index in range(0, batch):
        pool.submit(saveCommentBatch, index)
    pool.shutdown(wait=True)
    print("======= 结束爬 评论 信息 ===========")
    endTime = datetime.datetime.now()
    print(endTime.strftime('%Y-%m-%d %H:%M:%S'))
    print((endTime - startTime).seconds)
class Blockchain:
    constants: ConsensusConstants
    constants_json: Dict

    # peak of the blockchain
    peak_height: Optional[uint32]
    # All sub blocks in peak path are guaranteed to be included, can include orphan sub-blocks
    sub_blocks: Dict[bytes32, SubBlockRecord]
    # Defines the path from genesis to the peak, no orphan sub-blocks
    sub_height_to_hash: Dict[uint32, bytes32]
    # All sub-epoch summaries that have been included in the blockchain from the beginning until and including the peak
    # (height_included, SubEpochSummary). Note: ONLY for the sub-blocks in the path to the peak
    sub_epoch_summaries: Dict[uint32, SubEpochSummary] = {}
    # Unspent Store
    coin_store: CoinStore
    # Store
    block_store: BlockStore
    # Used to verify blocks in parallel
    pool: ProcessPoolExecutor

    # Whether blockchain is shut down or not
    _shut_down: bool

    # Lock to prevent simultaneous reads and writes
    lock: asyncio.Lock

    @staticmethod
    async def create(
        coin_store: CoinStore,
        block_store: BlockStore,
        consensus_constants: ConsensusConstants,
    ):
        """
        Initializes a blockchain with the SubBlockRecords from disk, assuming they have all been
        validated. Uses the genesis block given in override_constants, or as a fallback,
        in the consensus constants config.
        """
        self = Blockchain()
        self.lock = asyncio.Lock()  # External lock handled by full node
        cpu_count = multiprocessing.cpu_count()
        if cpu_count > 61:
            cpu_count = 61  # Windows Server 2016 has an issue https://bugs.python.org/issue26903
        num_workers = max(cpu_count - 2, 1)
        log.info(f"Starting {num_workers} processes for block validation")
        self.pool = ProcessPoolExecutor(max_workers=num_workers)

        self.constants = consensus_constants
        self.coin_store = coin_store
        self.block_store = block_store
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))
        self._shut_down = False
        await self._load_chain_from_store()
        return self

    def shut_down(self):
        self._shut_down = True
        self.pool.shutdown(wait=True)

    async def _load_chain_from_store(self) -> None:
        """
        Initializes the state of the Blockchain class from the database.
        """
        self.sub_blocks, peak = await self.block_store.get_sub_block_records()
        self.sub_height_to_hash = {}
        self.sub_epoch_summaries = {}

        if len(self.sub_blocks) == 0:
            assert peak is None
            self.peak_height = None
            return

        assert peak is not None
        self.peak_height = self.sub_blocks[peak].sub_block_height

        # Sets the other state variables (peak_height and height_to_hash)
        curr: SubBlockRecord = self.sub_blocks[peak]
        while True:
            self.sub_height_to_hash[curr.sub_block_height] = curr.header_hash
            if curr.sub_epoch_summary_included is not None:
                self.sub_epoch_summaries[
                    curr.sub_block_height] = curr.sub_epoch_summary_included
            if curr.sub_block_height == 0:
                break
            curr = self.sub_blocks[curr.prev_hash]
        assert len(self.sub_height_to_hash) == self.peak_height + 1

    def get_peak(self) -> Optional[SubBlockRecord]:
        """
        Return the peak of the blockchain
        """
        if self.peak_height is None:
            return None
        return self.sub_blocks[self.sub_height_to_hash[self.peak_height]]

    async def get_full_peak(self) -> Optional[FullBlock]:
        if self.peak_height is None:
            return None
        """ Return list of FullBlocks that are peaks"""
        block = await self.block_store.get_full_block(
            self.sub_height_to_hash[self.peak_height])
        assert block is not None
        return block

    async def get_block_peak(self) -> Optional[FullBlock]:
        """ Return peak block"""
        if self.peak_height is None:
            return None
        start = int(self.peak_height)
        peak = None
        while start >= 0:
            block = await self.block_store.get_full_block(
                self.sub_height_to_hash[uint32(start)])
            if block is not None and block.is_block():
                peak = block
                break
            start -= 1

        return peak

    def is_child_of_peak(self, block: UnfinishedBlock) -> bool:
        """
        True iff the block is the direct ancestor of the peak
        """
        peak = self.get_peak()
        if peak is None:
            return False

        return block.prev_header_hash == peak.header_hash

    def contains_sub_block(self, header_hash: bytes32) -> bool:
        """
        True if we have already added this block to the chain. This may return false for orphan sub-blocks
        that we have added but no longer keep in memory.
        """
        return header_hash in self.sub_blocks

    async def get_full_block(self,
                             header_hash: bytes32) -> Optional[FullBlock]:
        return await self.block_store.get_full_block(header_hash)

    async def receive_block(
        self,
        block: FullBlock,
        pre_validation_result: Optional[PreValidationResult] = None,
    ) -> Tuple[ReceiveBlockResult, Optional[Err], Optional[uint32]]:
        """
        This method must be called under the blockchain lock
        Adds a new block into the blockchain, if it's valid and connected to the current
        blockchain, regardless of whether it is the child of a head, or another block.
        Returns a header if block is added to head. Returns an error if the block is
        invalid. Also returns the fork height, in the case of a new peak.
        """
        genesis: bool = block.sub_block_height == 0

        if block.header_hash in self.sub_blocks:
            return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None

        if block.prev_header_hash not in self.sub_blocks and not genesis:
            return (
                ReceiveBlockResult.DISCONNECTED_BLOCK,
                Err.INVALID_PREV_BLOCK_HASH,
                None,
            )

        if pre_validation_result is None:
            if block.sub_block_height == 0:
                prev_sb: Optional[SubBlockRecord] = None
            else:
                prev_sb = self.sub_blocks[block.prev_header_hash]
            sub_slot_iters, difficulty = get_sub_slot_iters_and_difficulty(
                self.constants, block, self.sub_height_to_hash, prev_sb,
                self.sub_blocks)
            required_iters, error = validate_finished_header_block(
                self.constants,
                self.sub_blocks,
                block.get_block_header(),
                False,
                difficulty,
                sub_slot_iters,
            )

            if error is not None:
                return ReceiveBlockResult.INVALID_BLOCK, error.code, None
        else:
            required_iters = pre_validation_result.required_iters
            assert pre_validation_result.error is None
        assert required_iters is not None

        error_code = await validate_block_body(
            self.constants,
            self.sub_blocks,
            self.sub_height_to_hash,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            block.sub_block_height,
            block.height if block.is_block() else None,
            pre_validation_result.cost_result
            if pre_validation_result is not None else None,
        )

        if error_code is not None:
            return ReceiveBlockResult.INVALID_BLOCK, error_code, None

        sub_block = block_to_sub_block_record(
            self.constants,
            self.sub_blocks,
            self.sub_height_to_hash,
            required_iters,
            block,
            None,
        )

        # Always add the block to the database
        await self.block_store.add_full_block(block, sub_block)
        self.sub_blocks[sub_block.header_hash] = sub_block

        fork_height: Optional[uint32] = await self._reconsider_peak(
            sub_block, genesis)
        if fork_height is not None:
            return ReceiveBlockResult.NEW_PEAK, None, fork_height
        else:
            return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None

    async def _reconsider_peak(self, sub_block: SubBlockRecord,
                               genesis: bool) -> Optional[uint32]:
        """
        When a new block is added, this is called, to check if the new block is the new peak of the chain.
        This also handles reorgs by reverting blocks which are not in the heaviest chain.
        It returns the height of the fork between the previous chain and the new chain, or returns
        None if there was no update to the heaviest chain.
        """
        peak = self.get_peak()
        if genesis:
            if peak is None:
                block: Optional[
                    FullBlock] = await self.block_store.get_full_block(
                        sub_block.header_hash)
                assert block is not None
                await self.coin_store.new_block(block)
                self.sub_height_to_hash[uint32(0)] = block.header_hash
                self.peak_height = uint32(0)
                await self.block_store.set_peak(block.header_hash)
                return uint32(0)
            return None

        assert peak is not None
        if sub_block.weight > peak.weight:
            # Find the fork. if the block is just being appended, it will return the peak
            # If no blocks in common, returns -1, and reverts all blocks
            fork_sub_block_height: int = find_fork_point_in_chain(
                self.sub_blocks, sub_block, peak)
            if fork_sub_block_height == -1:
                coin_store_reorg_height = -1
            else:
                last_sb_in_common = self.sub_blocks[self.sub_height_to_hash[
                    uint32(fork_sub_block_height)]]
                if last_sb_in_common.is_block:
                    coin_store_reorg_height = last_sb_in_common.height
                else:
                    coin_store_reorg_height = last_sb_in_common.height - 1

            # Rollback to fork
            await self.coin_store.rollback_to_block(coin_store_reorg_height)

            # Rollback sub_epoch_summaries
            heights_to_delete = []
            for ses_included_height in self.sub_epoch_summaries.keys():
                if ses_included_height > fork_sub_block_height:
                    heights_to_delete.append(ses_included_height)
            for sub_height in heights_to_delete:
                del self.sub_epoch_summaries[sub_height]

            # Collect all blocks from fork point to new peak
            blocks_to_add: List[Tuple[FullBlock, SubBlockRecord]] = []
            curr = sub_block.header_hash
            while fork_sub_block_height < 0 or curr != self.sub_height_to_hash[
                    uint32(fork_sub_block_height)]:
                fetched_block: Optional[
                    FullBlock] = await self.block_store.get_full_block(curr)
                fetched_sub_block: Optional[
                    SubBlockRecord] = await self.block_store.get_sub_block_record(
                        curr)
                assert fetched_block is not None
                assert fetched_sub_block is not None
                blocks_to_add.append((fetched_block, fetched_sub_block))
                if fetched_block.sub_block_height == 0:
                    # Doing a full reorg, starting at height 0
                    break
                curr = fetched_sub_block.prev_hash

            for fetched_block, fetched_sub_block in reversed(blocks_to_add):
                self.sub_height_to_hash[
                    fetched_sub_block.
                    sub_block_height] = fetched_sub_block.header_hash
                if fetched_sub_block.is_block:
                    await self.coin_store.new_block(fetched_block)
                if fetched_sub_block.sub_epoch_summary_included is not None:
                    self.sub_epoch_summaries[
                        fetched_sub_block.
                        sub_block_height] = fetched_sub_block.sub_epoch_summary_included

            # Changes the peak to be the new peak
            await self.block_store.set_peak(sub_block.header_hash)
            self.peak_height = sub_block.sub_block_height
            return uint32(max(fork_sub_block_height, 0))

        # This is not a heavier block than the heaviest we have seen, so we don't change the coin set
        return None

    def get_next_difficulty(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert header_hash in self.sub_blocks
        curr = self.sub_blocks[header_hash]
        if curr.sub_block_height <= 2:
            return self.constants.DIFFICULTY_STARTING
        return get_next_difficulty(
            self.constants,
            self.sub_blocks,
            self.sub_height_to_hash,
            header_hash,
            curr.sub_block_height,
            uint64(curr.weight - self.sub_blocks[curr.prev_hash].weight),
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    def get_next_slot_iters(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert header_hash in self.sub_blocks
        curr = self.sub_blocks[header_hash]
        if curr.sub_block_height <= 2:
            return self.constants.SUB_SLOT_ITERS_STARTING
        return get_next_sub_slot_iters(
            self.constants,
            self.sub_blocks,
            self.sub_height_to_hash,
            header_hash,
            curr.sub_block_height,
            curr.sub_slot_iters,
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    async def get_sp_and_ip_sub_slots(
        self, header_hash: bytes32
    ) -> Optional[Tuple[Optional[EndOfSubSlotBundle],
                        Optional[EndOfSubSlotBundle]]]:
        block: Optional[FullBlock] = await self.block_store.get_full_block(
            header_hash)
        if block is None:
            return None
        is_overflow = self.sub_blocks[block.header_hash].overflow

        curr_sbr: SubBlockRecord = self.sub_blocks[block.header_hash]
        curr: Optional[FullBlock] = block
        assert curr is not None
        while curr_sbr.sub_block_height > 0:
            if curr_sbr.first_in_sub_slot:
                curr = await self.block_store.get_full_block(
                    curr_sbr.header_hash)
                assert curr is not None
                break
            curr_sbr = self.sub_blocks[curr_sbr.prev_hash]

        if len(curr.finished_sub_slots) == 0:
            # This means we got to genesis and still no sub-slots
            return None, None

        ip_sub_slot = curr.finished_sub_slots[-1]

        if not is_overflow:
            # Pos sub-slot is the same as infusion sub slot
            return None, ip_sub_slot

        if len(curr.finished_sub_slots) > 1:
            # Have both sub-slots
            return curr.finished_sub_slots[-2], ip_sub_slot

        prev_curr: Optional[FullBlock] = await self.block_store.get_full_block(
            curr.prev_header_hash)
        if prev_curr is None:
            assert curr.sub_block_height == 0
            prev_curr = curr
            prev_curr_sbr = self.sub_blocks[curr.header_hash]
        else:
            prev_curr_sbr = self.sub_blocks[curr.prev_header_hash]
        assert prev_curr_sbr is not None
        while prev_curr_sbr.sub_block_height > 0:
            if prev_curr_sbr.first_in_sub_slot:
                prev_curr = await self.block_store.get_full_block(
                    prev_curr_sbr.header_hash)
                assert prev_curr is not None
                break
            prev_curr_sbr = self.sub_blocks[prev_curr_sbr.prev_hash]

        if len(prev_curr.finished_sub_slots) == 0:
            return None, ip_sub_slot
        return prev_curr.finished_sub_slots[-1], ip_sub_slot

    def get_recent_reward_challenges(self) -> List[Tuple[bytes32, uint128]]:
        peak = self.get_peak()
        if peak is None:
            return []
        recent_rc: List[Tuple[bytes32, uint128]] = []
        curr = self.sub_blocks.get(peak.prev_hash, None)
        while curr is not None and len(
                recent_rc) < 2 * self.constants.MAX_SUB_SLOT_SUB_BLOCKS:
            recent_rc.append(
                (curr.reward_infusion_new_challenge, curr.total_iters))
            if curr.first_in_sub_slot:
                assert curr.finished_reward_slot_hashes is not None
                sub_slot_total_iters = curr.ip_sub_slot_total_iters(
                    self.constants)
                # Start from the most recent
                for rc in reversed(curr.finished_reward_slot_hashes):
                    recent_rc.append((rc, sub_slot_total_iters))
                    sub_slot_total_iters = uint128(sub_slot_total_iters -
                                                   curr.sub_slot_iters)
            curr = self.sub_blocks.get(curr.prev_hash, None)
        return list(reversed(recent_rc))

    async def validate_unfinished_block(
        self,
        block: UnfinishedBlock,
        skip_overflow_ss_validation=True
    ) -> Tuple[Optional[uint64], Optional[Err]]:
        if (block.prev_header_hash not in self.sub_blocks
                and not block.prev_header_hash
                == self.constants.GENESIS_PREV_HASH):
            return None, Err.INVALID_PREV_BLOCK_HASH

        unfinished_header_block = UnfinishedHeaderBlock(
            block.finished_sub_slots,
            block.reward_chain_sub_block,
            block.challenge_chain_sp_proof,
            block.reward_chain_sp_proof,
            block.foliage_sub_block,
            block.foliage_block,
            b"",
        )
        prev_sb = self.sub_blocks.get(unfinished_header_block.prev_header_hash,
                                      None)
        sub_slot_iters, difficulty = get_sub_slot_iters_and_difficulty(
            self.constants, unfinished_header_block, self.sub_height_to_hash,
            prev_sb, self.sub_blocks)
        required_iters, error = validate_unfinished_header_block(
            self.constants,
            self.sub_blocks,
            unfinished_header_block,
            False,
            difficulty,
            sub_slot_iters,
            skip_overflow_ss_validation,
        )

        if error is not None:
            return None, error.code

        prev_sub_height = (
            -1 if block.prev_header_hash == self.constants.GENESIS_PREV_HASH
            else self.sub_blocks[block.prev_header_hash].sub_block_height)

        if block.is_block():
            assert block.foliage_block is not None
            height: Optional[uint32] = block.foliage_block.height
        else:
            height = None
        error_code = await validate_block_body(
            self.constants,
            self.sub_blocks,
            self.sub_height_to_hash,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            uint32(prev_sub_height + 1),
            height,
        )

        if error_code is not None:
            return None, error_code

        return required_iters, None

    async def pre_validate_blocks_multiprocessing(
        self,
        blocks: List[FullBlock],
    ) -> Optional[List[PreValidationResult]]:
        return await pre_validate_blocks_multiprocessing(
            self.constants, self.constants_json, self.sub_blocks,
            self.sub_height_to_hash, blocks, self.pool)
示例#24
0
def do_test3(workers):
    param = {"max_workers": workers}
    loop = asyncio.new_event_loop()

    lock = threading.Lock()
    tresult = []
    presult = []
    cresult = []

    pre_input1 = input_generator(workers, 0)
    pre_input2 = input_generator(workers, max(pre_input1))
    pre_input3 = input_generator(workers, max(pre_input2))

    def result_checker(list, lock, fut):
        with lock:
            try:
                list.append(fut.result())
            except Exception as e:
                list.append(e)

    texec = ThreadPoolExecutor(**param)
    pexec = ProcessPoolExecutor(**param)
    cexec = CoroutinePoolExecutor(**param, loop=loop)

    tstart = round(time.time() + 1)
    input1 = [tstart + i for i in pre_input1]
    input2 = [tstart + i for i in pre_input2]
    input3 = [tstart + i for i in pre_input3]

    for x in input1:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))
    result_iter = texec.map(wake_at, input2)
    for x in input3:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))
    for x in result_iter:
        with lock:
            tresult.append(x)

    texec.shutdown(True)

    pstart = round(time.time() + _start_warm_up)
    input1 = [pstart + i for i in pre_input1]
    input2 = [pstart + i for i in pre_input2]
    input3 = [pstart + i for i in pre_input3]

    for x in input1:
        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))
    result_iter = pexec.map(wake_at, input2)
    for x in input3:
        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))
    for x in result_iter:
        with lock:
            presult.append(x)

    pexec.shutdown(True)

    cstart = round(time.time() + _start_warm_up)
    input1 = [cstart + i for i in pre_input1]
    input2 = [cstart + i for i in pre_input2]
    input3 = [cstart + i for i in pre_input3]

    async def async_main():
        for x in input1:
            future = cexec.submit(async_wake_at, x)
            future.add_done_callback(
                functools.partial(result_checker, cresult, lock))
        result_iter = cexec.map(async_wake_at, input2)
        for x in input3:
            future = cexec.submit(async_wake_at, x)
            future.add_done_callback(
                functools.partial(result_checker, cresult, lock))
        async for x in result_iter:
            with lock:
                cresult.append(x)
        await cexec.shutdown(False)

    loop.run_until_complete(async_main())

    try:
        loop.run_until_complete(cexec.shutdown(True))
        texec.shutdown(True)
        pexec.shutdown(True)
    finally:
        loop.close()

    tresult = [round((x - tstart) / _precision) for x in tresult]
    presult = [round((x - pstart) / _precision) for x in presult]
    cresult = [round((x - cstart) / _precision) for x in cresult]

    result = True
    for (t, p, c) in zip(tresult, presult, cresult):
        result = result and (t == p)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (p == c)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (c == t)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
    return result
示例#25
0
class Blockchain(BlockchainInterface):
    constants: ConsensusConstants
    constants_json: Dict

    # peak of the blockchain
    _peak_height: Optional[uint32]
    # All blocks in peak path are guaranteed to be included, can include orphan blocks
    __block_records: Dict[bytes32, BlockRecord]
    # all hashes of blocks in block_record by height, used for garbage collection
    __heights_in_cache: Dict[uint32, Set[bytes32]]
    # maps block height (of the current heaviest chain) to block hash and sub
    # epoch summaries
    __height_map: BlockHeightMap
    # Unspent Store
    coin_store: CoinStore
    # Store
    block_store: BlockStore
    # Used to verify blocks in parallel
    pool: ProcessPoolExecutor
    # Set holding seen compact proofs, in order to avoid duplicates.
    _seen_compact_proofs: Set[Tuple[VDFInfo, uint32]]

    # Whether blockchain is shut down or not
    _shut_down: bool

    # Lock to prevent simultaneous reads and writes
    lock: asyncio.Lock
    compact_proof_lock: asyncio.Lock
    hint_store: HintStore

    @staticmethod
    async def create(
        coin_store: CoinStore,
        block_store: BlockStore,
        consensus_constants: ConsensusConstants,
        hint_store: HintStore,
        blockchain_dir: Path,
        reserved_cores: int,
    ):
        """
        Initializes a blockchain with the BlockRecords from disk, assuming they have all been
        validated. Uses the genesis block given in override_constants, or as a fallback,
        in the consensus constants config.
        """
        self = Blockchain()
        self.lock = asyncio.Lock()  # External lock handled by full node
        self.compact_proof_lock = asyncio.Lock()
        cpu_count = multiprocessing.cpu_count()
        if cpu_count > 61:
            cpu_count = 61  # Windows Server 2016 has an issue https://bugs.python.org/issue26903
        num_workers = max(cpu_count - reserved_cores, 1)
        self.pool = ProcessPoolExecutor(max_workers=num_workers)
        log.info(f"Started {num_workers} processes for block validation")

        self.constants = consensus_constants
        self.coin_store = coin_store
        self.block_store = block_store
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))
        self._shut_down = False
        await self._load_chain_from_store(blockchain_dir)
        self._seen_compact_proofs = set()
        self.hint_store = hint_store
        return self

    def shut_down(self):
        self._shut_down = True
        self.pool.shutdown(wait=True)

    async def _load_chain_from_store(self, blockchain_dir):
        """
        Initializes the state of the Blockchain class from the database.
        """
        self.__height_map = await BlockHeightMap.create(
            blockchain_dir, self.block_store.db_wrapper)
        self.__block_records = {}
        self.__heights_in_cache = {}
        block_records, peak = await self.block_store.get_block_records_close_to_peak(
            self.constants.BLOCKS_CACHE_SIZE)
        for block in block_records.values():
            self.add_block_record(block)

        if len(block_records) == 0:
            assert peak is None
            self._peak_height = None
            return

        assert peak is not None
        self._peak_height = self.block_record(peak).height
        assert self.__height_map.contains_height(self._peak_height)
        assert not self.__height_map.contains_height(self._peak_height + 1)

    def get_peak(self) -> Optional[BlockRecord]:
        """
        Return the peak of the blockchain
        """
        if self._peak_height is None:
            return None
        return self.height_to_block_record(self._peak_height)

    async def get_full_peak(self) -> Optional[FullBlock]:
        if self._peak_height is None:
            return None
        """ Return list of FullBlocks that are peaks"""
        # TODO: address hint error and remove ignore
        #       error: Argument 1 to "get_full_block" of "BlockStore" has incompatible type "Optional[bytes32]";
        #       expected "bytes32"  [arg-type]
        block = await self.block_store.get_full_block(
            self.height_to_hash(self._peak_height))  # type: ignore[arg-type]
        assert block is not None
        return block

    async def get_full_block(self,
                             header_hash: bytes32) -> Optional[FullBlock]:
        return await self.block_store.get_full_block(header_hash)

    async def receive_block(
        self,
        block: FullBlock,
        pre_validation_result: PreValidationResult,
        fork_point_with_peak: Optional[uint32] = None,
    ) -> Tuple[ReceiveBlockResult, Optional[Err], Optional[uint32], Tuple[
            List[CoinRecord], Dict[bytes, Dict[bytes32, CoinRecord]]], ]:
        """
        This method must be called under the blockchain lock
        Adds a new block into the blockchain, if it's valid and connected to the current
        blockchain, regardless of whether it is the child of a head, or another block.
        Returns a header if block is added to head. Returns an error if the block is
        invalid. Also returns the fork height, in the case of a new peak.

        Args:
            block: The FullBlock to be validated.
            pre_validation_result: A result of successful pre validation
            fork_point_with_peak: The fork point, for efficiency reasons, if None, it will be recomputed

        Returns:
            The result of adding the block to the blockchain (NEW_PEAK, ADDED_AS_ORPHAN, INVALID_BLOCK,
                DISCONNECTED_BLOCK, ALREDY_HAVE_BLOCK)
            An optional error if the result is not NEW_PEAK or ADDED_AS_ORPHAN
            A fork point if the result is NEW_PEAK
            A list of changes to the coin store, and changes to hints, if the result is NEW_PEAK
        """

        genesis: bool = block.height == 0
        if self.contains_block(block.header_hash):
            return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None, ([], {})

        if not self.contains_block(block.prev_header_hash) and not genesis:
            return (ReceiveBlockResult.DISCONNECTED_BLOCK,
                    Err.INVALID_PREV_BLOCK_HASH, None, ([], {}))

        if not genesis and (self.block_record(block.prev_header_hash).height +
                            1) != block.height:
            return ReceiveBlockResult.INVALID_BLOCK, Err.INVALID_HEIGHT, None, (
                [], {})

        npc_result: Optional[NPCResult] = pre_validation_result.npc_result
        required_iters = pre_validation_result.required_iters
        if pre_validation_result.error is not None:
            return ReceiveBlockResult.INVALID_BLOCK, Err(
                pre_validation_result.error), None, ([], {})
        assert required_iters is not None

        error_code, _ = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            block.height,
            npc_result,
            fork_point_with_peak,
            self.get_block_generator,
            # If we did not already validate the signature, validate it now
            validate_signature=not pre_validation_result.validated_signature,
        )
        if error_code is not None:
            return ReceiveBlockResult.INVALID_BLOCK, error_code, None, ([], {})

        block_record = block_to_block_record(
            self.constants,
            self,
            required_iters,
            block,
            None,
        )
        # Always add the block to the database
        async with self.block_store.db_wrapper.lock:
            try:
                header_hash: bytes32 = block.header_hash
                # Perform the DB operations to update the state, and rollback if something goes wrong
                await self.block_store.db_wrapper.begin_transaction()
                await self.block_store.add_full_block(header_hash, block,
                                                      block_record, False)
                fork_height, peak_height, records, (
                    coin_record_change,
                    hint_changes) = await self._reconsider_peak(
                        block_record, genesis, fork_point_with_peak,
                        npc_result)
                await self.block_store.db_wrapper.commit_transaction()

                # Then update the memory cache. It is important that this task is not cancelled and does not throw
                self.add_block_record(block_record)
                for fetched_block_record in records:
                    self.__height_map.update_height(
                        fetched_block_record.height,
                        fetched_block_record.header_hash,
                        fetched_block_record.sub_epoch_summary_included,
                    )
                if peak_height is not None:
                    self._peak_height = peak_height
                    await self.__height_map.maybe_flush()
            except BaseException as e:
                self.block_store.rollback_cache_block(header_hash)
                await self.block_store.db_wrapper.rollback_transaction()
                log.error(
                    f"Error while adding block {block.header_hash} height {block.height},"
                    f" rolling back: {traceback.format_exc()} {e}")
                raise

        if fork_height is not None:
            # new coin records added
            assert coin_record_change is not None
            return ReceiveBlockResult.NEW_PEAK, None, fork_height, (
                coin_record_change, hint_changes)
        else:
            return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None, ([], {})

    def get_hint_list(self,
                      npc_result: NPCResult) -> List[Tuple[bytes32, bytes]]:
        h_list = []
        for npc in npc_result.npc_list:
            for opcode, conditions in npc.conditions:
                if opcode == ConditionOpcode.CREATE_COIN:
                    for condition in conditions:
                        if len(condition.vars
                               ) > 2 and condition.vars[2] != b"":
                            puzzle_hash, amount_bin = condition.vars[
                                0], condition.vars[1]
                            amount = int_from_bytes(amount_bin)
                            # TODO: address hint error and remove ignore
                            #       error: Argument 2 to "Coin" has incompatible type "bytes"; expected "bytes32"
                            #       [arg-type]
                            coin_id = Coin(
                                npc.coin_name, puzzle_hash,
                                amount).name()  # type: ignore[arg-type]
                            h_list.append((coin_id, condition.vars[2]))
        return h_list

    async def _reconsider_peak(
        self,
        block_record: BlockRecord,
        genesis: bool,
        fork_point_with_peak: Optional[uint32],
        npc_result: Optional[NPCResult],
    ) -> Tuple[Optional[uint32], Optional[uint32], List[BlockRecord], Tuple[
            List[CoinRecord], Dict[bytes, Dict[bytes32, CoinRecord]]], ]:
        """
        When a new block is added, this is called, to check if the new block is the new peak of the chain.
        This also handles reorgs by reverting blocks which are not in the heaviest chain.
        It returns the height of the fork between the previous chain and the new chain, or returns
        None if there was no update to the heaviest chain.
        """
        peak = self.get_peak()
        lastest_coin_state: Dict[bytes32, CoinRecord] = {}
        hint_coin_state: Dict[bytes, Dict[bytes32, CoinRecord]] = {}

        if genesis:
            if peak is None:
                block: Optional[
                    FullBlock] = await self.block_store.get_full_block(
                        block_record.header_hash)
                assert block is not None

                if npc_result is not None:
                    tx_removals, tx_additions = tx_removals_and_additions(
                        npc_result.npc_list)
                else:
                    tx_removals, tx_additions = [], []
                if block.is_transaction_block():
                    assert block.foliage_transaction_block is not None
                    added = await self.coin_store.new_block(
                        block.height,
                        block.foliage_transaction_block.timestamp,
                        block.get_included_reward_coins(),
                        tx_additions,
                        tx_removals,
                    )
                else:
                    added, _ = [], []
                await self.block_store.set_in_chain([
                    (block_record.header_hash, )
                ])
                await self.block_store.set_peak(block_record.header_hash)
                return uint32(0), uint32(0), [block_record], (added, {})
            return None, None, [], ([], {})

        assert peak is not None
        if block_record.weight > peak.weight:
            # Find the fork. if the block is just being appended, it will return the peak
            # If no blocks in common, returns -1, and reverts all blocks
            if block_record.prev_hash == peak.header_hash:
                fork_height: int = peak.height
            elif fork_point_with_peak is not None:
                fork_height = fork_point_with_peak
            else:
                fork_height = find_fork_point_in_chain(self, block_record,
                                                       peak)

            if block_record.prev_hash != peak.header_hash:
                roll_changes: List[
                    CoinRecord] = await self.coin_store.rollback_to_block(
                        fork_height)
                for coin_record in roll_changes:
                    lastest_coin_state[coin_record.name] = coin_record

            # Rollback sub_epoch_summaries
            self.__height_map.rollback(fork_height)
            await self.block_store.rollback(fork_height)

            # Collect all blocks from fork point to new peak
            blocks_to_add: List[Tuple[FullBlock, BlockRecord]] = []
            curr = block_record.header_hash

            while fork_height < 0 or curr != self.height_to_hash(
                    uint32(fork_height)):
                fetched_full_block: Optional[
                    FullBlock] = await self.block_store.get_full_block(curr)
                fetched_block_record: Optional[
                    BlockRecord] = await self.block_store.get_block_record(curr
                                                                           )
                assert fetched_full_block is not None
                assert fetched_block_record is not None
                blocks_to_add.append(
                    (fetched_full_block, fetched_block_record))
                if fetched_full_block.height == 0:
                    # Doing a full reorg, starting at height 0
                    break
                curr = fetched_block_record.prev_hash

            records_to_add = []
            for fetched_full_block, fetched_block_record in reversed(
                    blocks_to_add):
                records_to_add.append(fetched_block_record)
                if fetched_full_block.is_transaction_block():
                    if fetched_block_record.header_hash == block_record.header_hash:
                        tx_removals, tx_additions, npc_res = await self.get_tx_removals_and_additions(
                            fetched_full_block, npc_result)
                    else:
                        tx_removals, tx_additions, npc_res = await self.get_tx_removals_and_additions(
                            fetched_full_block, None)

                    assert fetched_full_block.foliage_transaction_block is not None
                    added_rec = await self.coin_store.new_block(
                        fetched_full_block.height,
                        fetched_full_block.foliage_transaction_block.timestamp,
                        fetched_full_block.get_included_reward_coins(),
                        tx_additions,
                        tx_removals,
                    )
                    removed_rec: List[Optional[CoinRecord]] = [
                        await self.coin_store.get_coin_record(name)
                        for name in tx_removals
                    ]

                    # Set additions first, then removals in order to handle ephemeral coin state
                    # Add in height order is also required
                    record: Optional[CoinRecord]
                    for record in added_rec:
                        assert record
                        lastest_coin_state[record.name] = record
                    for record in removed_rec:
                        assert record
                        lastest_coin_state[record.name] = record

                    if npc_res is not None:
                        hint_list: List[Tuple[
                            bytes32, bytes]] = self.get_hint_list(npc_res)
                        await self.hint_store.add_hints(hint_list)
                        # There can be multiple coins for the same hint
                        for coin_id, hint in hint_list:
                            key = hint
                            if key not in hint_coin_state:
                                hint_coin_state[key] = {}
                            hint_coin_state[key][coin_id] = lastest_coin_state[
                                coin_id]

            await self.block_store.set_in_chain([(br.header_hash, )
                                                 for br in records_to_add])

            # Changes the peak to be the new peak
            await self.block_store.set_peak(block_record.header_hash)
            return (
                uint32(max(fork_height, 0)),
                block_record.height,
                records_to_add,
                (list(lastest_coin_state.values()), hint_coin_state),
            )

        # This is not a heavier block than the heaviest we have seen, so we don't change the coin set
        return None, None, [], ([], {})

    async def get_tx_removals_and_additions(
        self,
        block: FullBlock,
        npc_result: Optional[NPCResult] = None
    ) -> Tuple[List[bytes32], List[Coin], Optional[NPCResult]]:
        if block.is_transaction_block():
            if block.transactions_generator is not None:
                if npc_result is None:
                    block_generator: Optional[
                        BlockGenerator] = await self.get_block_generator(block)
                    assert block_generator is not None
                    npc_result = get_name_puzzle_conditions(
                        block_generator,
                        self.constants.MAX_BLOCK_COST_CLVM,
                        cost_per_byte=self.constants.COST_PER_BYTE,
                        mempool_mode=False,
                        height=block.height,
                    )
                tx_removals, tx_additions = tx_removals_and_additions(
                    npc_result.npc_list)
                return tx_removals, tx_additions, npc_result
            else:
                return [], [], None
        else:
            return [], [], None

    def get_next_difficulty(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.DIFFICULTY_STARTING

        return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot,
                                                      curr, self)[1]

    def get_next_slot_iters(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.SUB_SLOT_ITERS_STARTING
        return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot,
                                                      curr, self)[0]

    async def get_sp_and_ip_sub_slots(
        self, header_hash: bytes32
    ) -> Optional[Tuple[Optional[EndOfSubSlotBundle],
                        Optional[EndOfSubSlotBundle]]]:
        block: Optional[FullBlock] = await self.block_store.get_full_block(
            header_hash)
        if block is None:
            return None
        curr_br: BlockRecord = self.block_record(block.header_hash)
        is_overflow = curr_br.overflow

        curr: Optional[FullBlock] = block
        assert curr is not None
        while True:
            if curr_br.first_in_sub_slot:
                curr = await self.block_store.get_full_block(
                    curr_br.header_hash)
                assert curr is not None
                break
            if curr_br.height == 0:
                break
            curr_br = self.block_record(curr_br.prev_hash)

        if len(curr.finished_sub_slots) == 0:
            # This means we got to genesis and still no sub-slots
            return None, None

        ip_sub_slot = curr.finished_sub_slots[-1]

        if not is_overflow:
            # Pos sub-slot is the same as infusion sub slot
            return None, ip_sub_slot

        if len(curr.finished_sub_slots) > 1:
            # Have both sub-slots
            return curr.finished_sub_slots[-2], ip_sub_slot

        prev_curr: Optional[FullBlock] = await self.block_store.get_full_block(
            curr.prev_header_hash)
        if prev_curr is None:
            assert curr.height == 0
            prev_curr = curr
            prev_curr_br = self.block_record(curr.header_hash)
        else:
            prev_curr_br = self.block_record(curr.prev_header_hash)
        assert prev_curr_br is not None
        while prev_curr_br.height > 0:
            if prev_curr_br.first_in_sub_slot:
                prev_curr = await self.block_store.get_full_block(
                    prev_curr_br.header_hash)
                assert prev_curr is not None
                break
            prev_curr_br = self.block_record(prev_curr_br.prev_hash)

        if len(prev_curr.finished_sub_slots) == 0:
            return None, ip_sub_slot
        return prev_curr.finished_sub_slots[-1], ip_sub_slot

    def get_recent_reward_challenges(self) -> List[Tuple[bytes32, uint128]]:
        peak = self.get_peak()
        if peak is None:
            return []
        recent_rc: List[Tuple[bytes32, uint128]] = []
        curr: Optional[BlockRecord] = peak
        while curr is not None and len(
                recent_rc) < 2 * self.constants.MAX_SUB_SLOT_BLOCKS:
            if curr != peak:
                recent_rc.append(
                    (curr.reward_infusion_new_challenge, curr.total_iters))
            if curr.first_in_sub_slot:
                assert curr.finished_reward_slot_hashes is not None
                sub_slot_total_iters = curr.ip_sub_slot_total_iters(
                    self.constants)
                # Start from the most recent
                for rc in reversed(curr.finished_reward_slot_hashes):
                    if sub_slot_total_iters < curr.sub_slot_iters:
                        break
                    recent_rc.append((rc, sub_slot_total_iters))
                    sub_slot_total_iters = uint128(sub_slot_total_iters -
                                                   curr.sub_slot_iters)
            curr = self.try_block_record(curr.prev_hash)
        return list(reversed(recent_rc))

    async def validate_unfinished_block(
            self,
            block: UnfinishedBlock,
            npc_result: Optional[NPCResult],
            skip_overflow_ss_validation=True) -> PreValidationResult:
        if (not self.contains_block(block.prev_header_hash)
                and not block.prev_header_hash
                == self.constants.GENESIS_CHALLENGE):
            return PreValidationResult(
                uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None, False)

        unfinished_header_block = UnfinishedHeaderBlock(
            block.finished_sub_slots,
            block.reward_chain_block,
            block.challenge_chain_sp_proof,
            block.reward_chain_sp_proof,
            block.foliage,
            block.foliage_transaction_block,
            b"",
        )
        prev_b = self.try_block_record(
            unfinished_header_block.prev_header_hash)
        sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty(
            self.constants,
            len(unfinished_header_block.finished_sub_slots) > 0, prev_b, self)
        required_iters, error = validate_unfinished_header_block(
            self.constants,
            self,
            unfinished_header_block,
            False,
            difficulty,
            sub_slot_iters,
            skip_overflow_ss_validation,
        )

        if error is not None:
            return PreValidationResult(uint16(error.code.value), None, None,
                                       False)
        prev_height = (-1 if block.prev_header_hash
                       == self.constants.GENESIS_CHALLENGE else
                       self.block_record(block.prev_header_hash).height)

        error_code, cost_result = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            uint32(prev_height + 1),
            npc_result,
            None,
            self.get_block_generator,
            validate_signature=
            False,  # Signature was already validated before calling this method, no need to validate
        )

        if error_code is not None:
            return PreValidationResult(uint16(error_code.value), None, None,
                                       False)

        return PreValidationResult(None, required_iters, cost_result, False)

    async def pre_validate_blocks_multiprocessing(
        self,
        blocks: List[FullBlock],
        npc_results: Dict[
            uint32,
            NPCResult],  # A cache of the result of running CLVM, optional (you can use {})
        batch_size: int = 4,
        wp_summaries: Optional[List[SubEpochSummary]] = None,
        *,
        validate_signatures: bool,
    ) -> List[PreValidationResult]:
        return await pre_validate_blocks_multiprocessing(
            self.constants,
            self.constants_json,
            self,
            blocks,
            self.pool,
            True,
            npc_results,
            self.get_block_generator,
            batch_size,
            wp_summaries,
            validate_signatures=validate_signatures,
        )

    async def run_generator(self, unfinished_block: bytes,
                            generator: BlockGenerator,
                            height: uint32) -> NPCResult:
        task = asyncio.get_running_loop().run_in_executor(
            self.pool,
            _run_generator,
            self.constants_json,
            unfinished_block,
            bytes(generator),
            height,
        )
        npc_result_bytes = await task
        if npc_result_bytes is None:
            raise ConsensusError(Err.UNKNOWN)
        ret = NPCResult.from_bytes(npc_result_bytes)
        if ret.error is not None:
            raise ConsensusError(ret.error)
        return ret

    def contains_block(self, header_hash: bytes32) -> bool:
        """
        True if we have already added this block to the chain. This may return false for orphan blocks
        that we have added but no longer keep in memory.
        """
        return header_hash in self.__block_records

    def block_record(self, header_hash: bytes32) -> BlockRecord:
        return self.__block_records[header_hash]

    def height_to_block_record(self, height: uint32) -> BlockRecord:
        header_hash = self.height_to_hash(height)
        # TODO: address hint error and remove ignore
        #       error: Argument 1 to "block_record" of "Blockchain" has incompatible type "Optional[bytes32]"; expected
        #       "bytes32"  [arg-type]
        return self.block_record(header_hash)  # type: ignore[arg-type]

    def get_ses_heights(self) -> List[uint32]:
        return self.__height_map.get_ses_heights()

    def get_ses(self, height: uint32) -> SubEpochSummary:
        return self.__height_map.get_ses(height)

    def height_to_hash(self, height: uint32) -> Optional[bytes32]:
        return self.__height_map.get_hash(height)

    def contains_height(self, height: uint32) -> bool:
        return self.__height_map.contains_height(height)

    def get_peak_height(self) -> Optional[uint32]:
        return self._peak_height

    async def warmup(self, fork_point: uint32):
        """
        Loads blocks into the cache. The blocks loaded include all blocks from
        fork point - BLOCKS_CACHE_SIZE up to and including the fork_point.

        Args:
            fork_point: the last block height to load in the cache

        """
        if self._peak_height is None:
            return None
        block_records = await self.block_store.get_block_records_in_range(
            max(fork_point - self.constants.BLOCKS_CACHE_SIZE, uint32(0)),
            fork_point)
        for block_record in block_records.values():
            self.add_block_record(block_record)

    def clean_block_record(self, height: int):
        """
        Clears all block records in the cache which have block_record < height.
        Args:
            height: Minimum height that we need to keep in the cache
        """
        if height < 0:
            return None
        blocks_to_remove = self.__heights_in_cache.get(uint32(height), None)
        while blocks_to_remove is not None and height >= 0:
            for header_hash in blocks_to_remove:
                del self.__block_records[header_hash]  # remove from blocks
            del self.__heights_in_cache[uint32(
                height)]  # remove height from heights in cache

            if height == 0:
                break
            height = height - 1
            blocks_to_remove = self.__heights_in_cache.get(
                uint32(height), None)

    def clean_block_records(self):
        """
        Cleans the cache so that we only maintain relevant blocks. This removes
        block records that have height < peak - BLOCKS_CACHE_SIZE.
        These blocks are necessary for calculating future difficulty adjustments.
        """

        if len(self.__block_records) < self.constants.BLOCKS_CACHE_SIZE:
            return None

        assert self._peak_height is not None
        if self._peak_height - self.constants.BLOCKS_CACHE_SIZE < 0:
            return None
        self.clean_block_record(self._peak_height -
                                self.constants.BLOCKS_CACHE_SIZE)

    async def get_block_records_in_range(
            self, start: int, stop: int) -> Dict[bytes32, BlockRecord]:
        return await self.block_store.get_block_records_in_range(start, stop)

    async def get_header_blocks_in_range(
            self,
            start: int,
            stop: int,
            tx_filter: bool = True) -> Dict[bytes32, HeaderBlock]:
        hashes = []
        for height in range(start, stop + 1):
            if self.contains_height(uint32(height)):
                # TODO: address hint error and remove ignore
                #       error: Incompatible types in assignment (expression has type "Optional[bytes32]", variable has
                #       type "bytes32")  [assignment]
                header_hash: bytes32 = self.height_to_hash(
                    uint32(height))  # type: ignore[assignment]
                hashes.append(header_hash)

        blocks: List[FullBlock] = []
        for hash in hashes.copy():
            block = self.block_store.block_cache.get(hash)
            if block is not None:
                blocks.append(block)
                hashes.remove(hash)
        blocks_on_disk: List[
            FullBlock] = await self.block_store.get_blocks_by_hash(hashes)
        blocks.extend(blocks_on_disk)
        header_blocks: Dict[bytes32, HeaderBlock] = {}

        for block in blocks:
            if self.height_to_hash(block.height) != block.header_hash:
                raise ValueError(
                    f"Block at {block.header_hash} is no longer in the blockchain (it's in a fork)"
                )
            if tx_filter is False:
                header = get_block_header(block, [], [])
            else:
                tx_additions: List[CoinRecord] = [
                    c
                    for c in (await self.coin_store.get_coins_added_at_height(
                        block.height)) if not c.coinbase
                ]
                removed: List[
                    CoinRecord] = await self.coin_store.get_coins_removed_at_height(
                        block.height)
                header = get_block_header(
                    block, [record.coin for record in tx_additions],
                    [record.coin.name() for record in removed])
            header_blocks[header.header_hash] = header

        return header_blocks

    async def get_header_block_by_height(
            self,
            height: int,
            header_hash: bytes32,
            tx_filter: bool = True) -> Optional[HeaderBlock]:
        header_dict: Dict[bytes32,
                          HeaderBlock] = await self.get_header_blocks_in_range(
                              height, height, tx_filter)
        if len(header_dict) == 0:
            return None
        if header_hash not in header_dict:
            return None
        return header_dict[header_hash]

    async def get_block_records_at(self,
                                   heights: List[uint32],
                                   batch_size=900) -> List[BlockRecord]:
        """
        gets block records by height (only blocks that are part of the chain)
        """
        records: List[BlockRecord] = []
        hashes = []
        assert batch_size < 999  # sqlite in python 3.7 has a limit on 999 variables in queries
        for height in heights:
            hashes.append(self.height_to_hash(height))
            if len(hashes) > batch_size:
                # TODO: address hint error and remove ignore
                #       error: Argument 1 to "get_block_records_by_hash" of "BlockStore" has incompatible type
                #       "List[Optional[bytes32]]"; expected "List[bytes32]"  [arg-type]
                res = await self.block_store.get_block_records_by_hash(
                    hashes)  # type: ignore[arg-type]
                records.extend(res)
                hashes = []

        if len(hashes) > 0:
            # TODO: address hint error and remove ignore
            #       error: Argument 1 to "get_block_records_by_hash" of "BlockStore" has incompatible type
            #       "List[Optional[bytes32]]"; expected "List[bytes32]"  [arg-type]
            res = await self.block_store.get_block_records_by_hash(
                hashes)  # type: ignore[arg-type]
            records.extend(res)
        return records

    async def get_block_record_from_db(
            self, header_hash: bytes32) -> Optional[BlockRecord]:
        if header_hash in self.__block_records:
            return self.__block_records[header_hash]
        return await self.block_store.get_block_record(header_hash)

    def remove_block_record(self, header_hash: bytes32):
        sbr = self.block_record(header_hash)
        del self.__block_records[header_hash]
        self.__heights_in_cache[sbr.height].remove(header_hash)

    def add_block_record(self, block_record: BlockRecord):
        """
        Adds a block record to the cache.
        """

        self.__block_records[block_record.header_hash] = block_record
        if block_record.height not in self.__heights_in_cache.keys():
            self.__heights_in_cache[block_record.height] = set()
        self.__heights_in_cache[block_record.height].add(
            block_record.header_hash)

    async def persist_sub_epoch_challenge_segments(
            self, ses_block_hash: bytes32,
            segments: List[SubEpochChallengeSegment]):
        return await self.block_store.persist_sub_epoch_challenge_segments(
            ses_block_hash, segments)

    async def get_sub_epoch_challenge_segments(
        self,
        ses_block_hash: bytes32,
    ) -> Optional[List[SubEpochChallengeSegment]]:
        segments: Optional[List[
            SubEpochChallengeSegment]] = await self.block_store.get_sub_epoch_challenge_segments(
                ses_block_hash)
        if segments is None:
            return None
        return segments

    # Returns 'True' if the info is already in the set, otherwise returns 'False' and stores it.
    def seen_compact_proofs(self, vdf_info: VDFInfo, height: uint32) -> bool:
        pot_tuple = (vdf_info, height)
        if pot_tuple in self._seen_compact_proofs:
            return True
        # Periodically cleanup to keep size small. TODO: make this smarter, like FIFO.
        if len(self._seen_compact_proofs) > 10000:
            self._seen_compact_proofs.clear()
        self._seen_compact_proofs.add(pot_tuple)
        return False

    async def get_block_generator(
            self,
            block: Union[FullBlock, UnfinishedBlock],
            additional_blocks=None) -> Optional[BlockGenerator]:
        if additional_blocks is None:
            additional_blocks = {}
        ref_list = block.transactions_generator_ref_list
        if block.transactions_generator is None:
            assert len(ref_list) == 0
            return None
        if len(ref_list) == 0:
            return BlockGenerator(block.transactions_generator, [], [])

        result: List[SerializedProgram] = []
        previous_block_hash = block.prev_header_hash
        if (self.try_block_record(previous_block_hash) and self.height_to_hash(
                self.block_record(previous_block_hash).height)
                == previous_block_hash):
            # We are not in a reorg, no need to look up alternate header hashes
            # (we can get them from height_to_hash)
            for ref_height in block.transactions_generator_ref_list:
                header_hash = self.height_to_hash(ref_height)

                # if ref_height is invalid, this block should have failed with
                # FUTURE_GENERATOR_REFS before getting here
                assert header_hash is not None

                ref_block = await self.block_store.get_full_block(header_hash)
                assert ref_block is not None
                if ref_block.transactions_generator is None:
                    raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                result.append(ref_block.transactions_generator)
        else:
            # First tries to find the blocks in additional_blocks
            reorg_chain: Dict[uint32, FullBlock] = {}
            curr: Union[FullBlock, UnfinishedBlock] = block
            additional_height_dict = {}
            while curr.prev_header_hash in additional_blocks:
                prev: FullBlock = additional_blocks[curr.prev_header_hash]
                additional_height_dict[prev.height] = prev
                if isinstance(curr, FullBlock):
                    assert curr.height == prev.height + 1
                reorg_chain[prev.height] = prev
                curr = prev

            peak: Optional[BlockRecord] = self.get_peak()
            if self.contains_block(curr.prev_header_hash) and peak is not None:
                # Then we look up blocks up to fork point one at a time, backtracking
                previous_block_hash = curr.prev_header_hash
                prev_block_record = await self.block_store.get_block_record(
                    previous_block_hash)
                prev_block = await self.block_store.get_full_block(
                    previous_block_hash)
                assert prev_block is not None
                assert prev_block_record is not None
                fork = find_fork_point_in_chain(self, peak, prev_block_record)
                curr_2: Optional[FullBlock] = prev_block
                assert curr_2 is not None and isinstance(curr_2, FullBlock)
                reorg_chain[curr_2.height] = curr_2
                while curr_2.height > fork and curr_2.height > 0:
                    curr_2 = await self.block_store.get_full_block(
                        curr_2.prev_header_hash)
                    assert curr_2 is not None
                    reorg_chain[curr_2.height] = curr_2

            for ref_height in block.transactions_generator_ref_list:
                if ref_height in reorg_chain:
                    ref_block = reorg_chain[ref_height]
                    assert ref_block is not None
                    if ref_block.transactions_generator is None:
                        raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                    result.append(ref_block.transactions_generator)
                else:
                    if ref_height in additional_height_dict:
                        ref_block = additional_height_dict[ref_height]
                    else:
                        header_hash = self.height_to_hash(ref_height)
                        # TODO: address hint error and remove ignore
                        #       error: Argument 1 to "get_full_block" of "Blockchain" has incompatible type
                        #       "Optional[bytes32]"; expected "bytes32"  [arg-type]
                        ref_block = await self.get_full_block(
                            header_hash)  # type: ignore[arg-type]
                    assert ref_block is not None
                    if ref_block.transactions_generator is None:
                        raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR)
                    result.append(ref_block.transactions_generator)
        assert len(result) == len(ref_list)
        return BlockGenerator(block.transactions_generator, result, [])
class MempoolManager:
    def __init__(self, coin_store: CoinStore,
                 consensus_constants: ConsensusConstants):
        self.constants: ConsensusConstants = consensus_constants
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))

        # Keep track of seen spend_bundles
        self.seen_bundle_hashes: Dict[bytes32, bytes32] = {}

        self.coin_store = coin_store
        self.lock = asyncio.Lock()

        # The fee per cost must be above this amount to consider the fee "nonzero", and thus able to kick out other
        # transactions. This prevents spam. This is equivalent to 0.055 XCH per block, or about 0.00005 XCH for two
        # spends.
        self.nonzero_fee_minimum_fpc = 5

        self.limit_factor = 0.5
        self.mempool_max_total_cost = int(self.constants.MAX_BLOCK_COST_CLVM *
                                          self.constants.MEMPOOL_BLOCK_BUFFER)

        # Transactions that were unable to enter mempool, used for retry. (they were invalid)
        self.potential_cache = PendingTxCache(
            self.constants.MAX_BLOCK_COST_CLVM * 1)
        self.seen_cache_size = 10000
        self.pool = ProcessPoolExecutor(max_workers=2)

        # The mempool will correspond to a certain peak
        self.peak: Optional[BlockRecord] = None
        self.mempool: Mempool = Mempool(self.mempool_max_total_cost)

    def shut_down(self):
        self.pool.shutdown(wait=True)

    async def create_bundle_from_mempool(
        self, last_tb_header_hash: bytes32
    ) -> Optional[Tuple[SpendBundle, List[Coin], List[Coin]]]:
        """
        Returns aggregated spendbundle that can be used for creating new block,
        additions and removals in that spend_bundle
        """
        if self.peak is None or self.peak.header_hash != last_tb_header_hash:
            return None

        cost_sum = 0  # Checks that total cost does not exceed block maximum
        fee_sum = 0  # Checks that total fees don't exceed 64 bits
        spend_bundles: List[SpendBundle] = []
        removals = []
        additions = []
        broke_from_inner_loop = False
        log.info(
            f"Starting to make block, max cost: {self.constants.MAX_BLOCK_COST_CLVM}"
        )
        for dic in reversed(self.mempool.sorted_spends.values()):
            if broke_from_inner_loop:
                break
            for item in dic.values():
                log.info(
                    f"Cumulative cost: {cost_sum}, fee per cost: {item.fee / item.cost}"
                )
                if (item.cost + cost_sum <=
                        self.limit_factor * self.constants.MAX_BLOCK_COST_CLVM
                        and
                        item.fee + fee_sum <= self.constants.MAX_COIN_AMOUNT):
                    spend_bundles.append(item.spend_bundle)
                    cost_sum += item.cost
                    fee_sum += item.fee
                    removals.extend(item.removals)
                    additions.extend(item.additions)
                else:
                    broke_from_inner_loop = True
                    break
        if len(spend_bundles) > 0:
            log.info(
                f"Cumulative cost of block (real cost should be less) {cost_sum}. Proportion "
                f"full: {cost_sum / self.constants.MAX_BLOCK_COST_CLVM}")
            agg = SpendBundle.aggregate(spend_bundles)
            return agg, additions, removals
        else:
            return None

    def get_filter(self) -> bytes:
        all_transactions: Set[bytes32] = set()
        byte_array_list = []
        for key, _ in self.mempool.spends.items():
            if key not in all_transactions:
                all_transactions.add(key)
                byte_array_list.append(bytearray(key))

        tx_filter: PyBIP158 = PyBIP158(byte_array_list)
        return bytes(tx_filter.GetEncoded())

    def is_fee_enough(self, fees: uint64, cost: uint64) -> bool:
        """
        Determines whether any of the pools can accept a transaction with a given fees
        and cost.
        """
        if cost == 0:
            return False
        fees_per_cost = fees / cost
        if not self.mempool.at_full_capacity(cost) or (
                fees_per_cost >= self.nonzero_fee_minimum_fpc
                and fees_per_cost > self.mempool.get_min_fee_rate(cost)):
            return True
        return False

    def add_and_maybe_pop_seen(self, spend_name: bytes32):
        self.seen_bundle_hashes[spend_name] = spend_name
        while len(self.seen_bundle_hashes) > self.seen_cache_size:
            first_in = list(self.seen_bundle_hashes.keys())[0]
            self.seen_bundle_hashes.pop(first_in)

    def seen(self, bundle_hash: bytes32) -> bool:
        """Return true if we saw this spendbundle recently"""
        return bundle_hash in self.seen_bundle_hashes

    def remove_seen(self, bundle_hash: bytes32):
        if bundle_hash in self.seen_bundle_hashes:
            self.seen_bundle_hashes.pop(bundle_hash)

    @staticmethod
    def get_min_fee_increase() -> int:
        # 0.00001 XCH
        return 10000000

    def can_replace(
        self,
        conflicting_items: Dict[bytes32, MempoolItem],
        removals: Dict[bytes32, CoinRecord],
        fees: uint64,
        fees_per_cost: float,
    ) -> bool:
        conflicting_fees = 0
        conflicting_cost = 0
        for item in conflicting_items.values():
            conflicting_fees += item.fee
            conflicting_cost += item.cost

            # All coins spent in all conflicting items must also be spent in the new item. (superset rule). This is
            # important because otherwise there exists an attack. A user spends coin A. An attacker replaces the
            # bundle with AB with a higher fee. An attacker then replaces the bundle with just B with a higher
            # fee than AB therefore kicking out A altogether. The better way to solve this would be to keep a cache
            # of booted transactions like A, and retry them after they get removed from mempool due to a conflict.
            for coin in item.removals:
                if coin.name() not in removals:
                    log.debug(
                        f"Rejecting conflicting tx as it does not spend conflicting coin {coin.name()}"
                    )
                    return False

        # New item must have higher fee per cost
        conflicting_fees_per_cost = conflicting_fees / conflicting_cost
        if fees_per_cost <= conflicting_fees_per_cost:
            log.debug(
                f"Rejecting conflicting tx due to not increasing fees per cost "
                f"({fees_per_cost} <= {conflicting_fees_per_cost})")
            return False

        # New item must increase the total fee at least by a certain amount
        fee_increase = fees - conflicting_fees
        if fee_increase < self.get_min_fee_increase():
            log.debug(
                f"Rejecting conflicting tx due to low fee increase ({fee_increase})"
            )
            return False

        log.info(
            f"Replacing conflicting tx in mempool. New tx fee: {fees}, old tx fees: {conflicting_fees}"
        )
        return True

    async def pre_validate_spendbundle(self, new_spend: SpendBundle,
                                       new_spend_bytes: Optional[bytes],
                                       spend_name: bytes32) -> NPCResult:
        """
        Errors are included within the cached_result.
        This runs in another process so we don't block the main thread
        """
        start_time = time.time()
        if new_spend_bytes is None:
            new_spend_bytes = bytes(new_spend)
        err, cached_result_bytes, new_cache_entries = await asyncio.get_running_loop(
        ).run_in_executor(
            self.pool,
            validate_clvm_and_signature,
            new_spend_bytes,
            int(self.limit_factor * self.constants.MAX_BLOCK_COST_CLVM),
            self.constants.COST_PER_BYTE,
            self.constants.AGG_SIG_ME_ADDITIONAL_DATA,
        )
        if err is not None:
            raise ValidationError(err)
        for cache_entry_key, cached_entry_value in new_cache_entries.items():
            LOCAL_CACHE.put(cache_entry_key,
                            GTElement.from_bytes(cached_entry_value))
        ret = NPCResult.from_bytes(cached_result_bytes)
        end_time = time.time()
        log.debug(
            f"pre_validate_spendbundle took {end_time - start_time:0.4f} seconds for {spend_name}"
        )
        return ret

    async def add_spendbundle(
        self,
        new_spend: SpendBundle,
        npc_result: NPCResult,
        spend_name: bytes32,
        program: Optional[SerializedProgram] = None,
    ) -> Tuple[Optional[uint64], MempoolInclusionStatus, Optional[Err]]:
        """
        Tries to add spend bundle to the mempool
        Returns the cost (if SUCCESS), the result (MempoolInclusion status), and an optional error
        """
        start_time = time.time()
        if self.peak is None:
            return None, MempoolInclusionStatus.FAILED, Err.MEMPOOL_NOT_INITIALIZED

        npc_list = npc_result.npc_list
        assert npc_result.error is None
        if program is None:
            program = simple_solution_generator(new_spend).program
        cost = calculate_cost_of_program(program, npc_result,
                                         self.constants.COST_PER_BYTE)

        log.debug(f"Cost: {cost}")

        if cost > int(self.limit_factor * self.constants.MAX_BLOCK_COST_CLVM):
            # we shouldn't ever end up here, since the cost is limited when we
            # execute the CLVM program.
            return None, MempoolInclusionStatus.FAILED, Err.BLOCK_COST_EXCEEDS_MAX

        # build removal list
        removal_names: List[bytes32] = [npc.coin_name for npc in npc_list]
        if set(removal_names) != set([s.name() for s in new_spend.removals()]):
            return None, MempoolInclusionStatus.FAILED, Err.INVALID_SPEND_BUNDLE

        additions = additions_for_npc(npc_list)

        additions_dict: Dict[bytes32, Coin] = {}
        for add in additions:
            additions_dict[add.name()] = add

        addition_amount = uint64(0)
        # Check additions for max coin amount
        for coin in additions:
            if coin.amount < 0:
                return (
                    None,
                    MempoolInclusionStatus.FAILED,
                    Err.COIN_AMOUNT_NEGATIVE,
                )
            if coin.amount > self.constants.MAX_COIN_AMOUNT:
                return (
                    None,
                    MempoolInclusionStatus.FAILED,
                    Err.COIN_AMOUNT_EXCEEDS_MAXIMUM,
                )
            addition_amount = uint64(addition_amount + coin.amount)
        # Check for duplicate outputs
        addition_counter = collections.Counter(_.name() for _ in additions)
        for k, v in addition_counter.items():
            if v > 1:
                return None, MempoolInclusionStatus.FAILED, Err.DUPLICATE_OUTPUT
        # Check for duplicate inputs
        removal_counter = collections.Counter(name for name in removal_names)
        for k, v in removal_counter.items():
            if v > 1:
                return None, MempoolInclusionStatus.FAILED, Err.DOUBLE_SPEND
        # Skip if already added
        if spend_name in self.mempool.spends:
            return uint64(cost), MempoolInclusionStatus.SUCCESS, None

        removal_record_dict: Dict[bytes32, CoinRecord] = {}
        removal_coin_dict: Dict[bytes32, Coin] = {}
        removal_amount = uint64(0)
        for name in removal_names:
            removal_record = await self.coin_store.get_coin_record(name)
            if removal_record is None and name not in additions_dict:
                return None, MempoolInclusionStatus.FAILED, Err.UNKNOWN_UNSPENT
            elif name in additions_dict:
                removal_coin = additions_dict[name]
                # TODO(straya): what timestamp to use here?
                assert self.peak.timestamp is not None
                removal_record = CoinRecord(
                    removal_coin,
                    uint32(
                        self.peak.height +
                        1),  # In mempool, so will be included in next height
                    uint32(0),
                    False,
                    uint64(self.peak.timestamp + 1),
                )

            assert removal_record is not None
            removal_amount = uint64(removal_amount +
                                    removal_record.coin.amount)
            removal_record_dict[name] = removal_record
            removal_coin_dict[name] = removal_record.coin

        removals: List[Coin] = [coin for coin in removal_coin_dict.values()]

        if addition_amount > removal_amount:
            print(addition_amount, removal_amount)
            return None, MempoolInclusionStatus.FAILED, Err.MINTING_COIN

        fees = uint64(removal_amount - addition_amount)
        assert_fee_sum: uint64 = uint64(0)

        for npc in npc_list:
            if ConditionOpcode.RESERVE_FEE in npc.condition_dict:
                fee_list: List[ConditionWithArgs] = npc.condition_dict[
                    ConditionOpcode.RESERVE_FEE]
                for cvp in fee_list:
                    fee = int_from_bytes(cvp.vars[0])
                    if fee < 0:
                        return None, MempoolInclusionStatus.FAILED, Err.RESERVE_FEE_CONDITION_FAILED
                    assert_fee_sum = assert_fee_sum + fee
        if fees < assert_fee_sum:
            return (
                None,
                MempoolInclusionStatus.FAILED,
                Err.RESERVE_FEE_CONDITION_FAILED,
            )

        if cost == 0:
            return None, MempoolInclusionStatus.FAILED, Err.UNKNOWN

        fees_per_cost: float = fees / cost
        # If pool is at capacity check the fee, if not then accept even without the fee
        if self.mempool.at_full_capacity(cost):
            if fees_per_cost < self.nonzero_fee_minimum_fpc:
                return None, MempoolInclusionStatus.FAILED, Err.INVALID_FEE_TOO_CLOSE_TO_ZERO
            if fees_per_cost <= self.mempool.get_min_fee_rate(cost):
                return None, MempoolInclusionStatus.FAILED, Err.INVALID_FEE_LOW_FEE
        # Check removals against UnspentDB + DiffStore + Mempool + SpendBundle
        # Use this information later when constructing a block
        fail_reason, conflicts = await self.check_removals(removal_record_dict)
        # If there is a mempool conflict check if this spendbundle has a higher fee per cost than all others
        tmp_error: Optional[Err] = None
        conflicting_pool_items: Dict[bytes32, MempoolItem] = {}
        if fail_reason is Err.MEMPOOL_CONFLICT:
            for conflicting in conflicts:
                sb: MempoolItem = self.mempool.removals[conflicting.name()]
                conflicting_pool_items[sb.name] = sb
            if not self.can_replace(conflicting_pool_items,
                                    removal_record_dict, fees, fees_per_cost):
                potential = MempoolItem(new_spend, uint64(fees), npc_result,
                                        cost, spend_name, additions, removals,
                                        program)
                self.potential_cache.add(potential)
                return (
                    uint64(cost),
                    MempoolInclusionStatus.PENDING,
                    Err.MEMPOOL_CONFLICT,
                )

        elif fail_reason:
            return None, MempoolInclusionStatus.FAILED, fail_reason

        if tmp_error:
            return None, MempoolInclusionStatus.FAILED, tmp_error

        # Verify conditions, create hash_key list for aggsig check
        error: Optional[Err] = None
        for npc in npc_list:
            coin_record: CoinRecord = removal_record_dict[npc.coin_name]
            # Check that the revealed removal puzzles actually match the puzzle hash
            if npc.puzzle_hash != coin_record.coin.puzzle_hash:
                log.warning(
                    "Mempool rejecting transaction because of wrong puzzle_hash"
                )
                log.warning(
                    f"{npc.puzzle_hash} != {coin_record.coin.puzzle_hash}")
                return None, MempoolInclusionStatus.FAILED, Err.WRONG_PUZZLE_HASH

            chialisp_height = (self.peak.prev_transaction_block_height
                               if not self.peak.is_transaction_block else
                               self.peak.height)
            assert self.peak.timestamp is not None
            error = mempool_check_conditions_dict(
                coin_record,
                npc.condition_dict,
                uint32(chialisp_height),
                self.peak.timestamp,
            )

            if error:
                if error is Err.ASSERT_HEIGHT_ABSOLUTE_FAILED or error is Err.ASSERT_HEIGHT_RELATIVE_FAILED:
                    potential = MempoolItem(new_spend, uint64(fees),
                                            npc_result, cost, spend_name,
                                            additions, removals, program)
                    self.potential_cache.add(potential)
                    return uint64(cost), MempoolInclusionStatus.PENDING, error
                break

        if error:
            return None, MempoolInclusionStatus.FAILED, error

        # Remove all conflicting Coins and SpendBundles
        if fail_reason:
            mempool_item: MempoolItem
            for mempool_item in conflicting_pool_items.values():
                self.mempool.remove_from_pool(mempool_item)

        new_item = MempoolItem(new_spend, uint64(fees), npc_result, cost,
                               spend_name, additions, removals, program)
        self.mempool.add_to_pool(new_item)
        now = time.time()
        log.log(
            logging.DEBUG,
            f"add_spendbundle {spend_name} took {now - start_time:0.2f} seconds. "
            f"Cost: {cost} ({round(100.0 * cost/self.constants.MAX_BLOCK_COST_CLVM, 3)}% of max block cost)",
        )

        return uint64(cost), MempoolInclusionStatus.SUCCESS, None

    async def check_removals(
        self, removals: Dict[bytes32,
                             CoinRecord]) -> Tuple[Optional[Err], List[Coin]]:
        """
        This function checks for double spends, unknown spends and conflicting transactions in mempool.
        Returns Error (if any), dictionary of Unspents, list of coins with conflict errors (if any any).
        Note that additions are not checked for duplicates, because having duplicate additions requires also
        having duplicate removals.
        """
        assert self.peak is not None
        conflicts: List[Coin] = []

        for record in removals.values():
            removal = record.coin
            # 1. Checks if it's been spent already
            if record.spent == 1:
                return Err.DOUBLE_SPEND, []
            # 2. Checks if there's a mempool conflict
            if removal.name() in self.mempool.removals:
                conflicts.append(removal)

        if len(conflicts) > 0:
            return Err.MEMPOOL_CONFLICT, conflicts
        # 5. If coins can be spent return list of unspents as we see them in local storage
        return None, []

    def get_spendbundle(self, bundle_hash: bytes32) -> Optional[SpendBundle]:
        """Returns a full SpendBundle if it's inside one the mempools"""
        if bundle_hash in self.mempool.spends:
            return self.mempool.spends[bundle_hash].spend_bundle
        return None

    def get_mempool_item(self, bundle_hash: bytes32) -> Optional[MempoolItem]:
        """Returns a MempoolItem if it's inside one the mempools"""
        if bundle_hash in self.mempool.spends:
            return self.mempool.spends[bundle_hash]
        return None

    async def new_peak(
        self, new_peak: Optional[BlockRecord], coin_changes: List[CoinRecord]
    ) -> List[Tuple[SpendBundle, NPCResult, bytes32]]:
        """
        Called when a new peak is available, we try to recreate a mempool for the new tip.
        """
        if new_peak is None:
            return []
        if new_peak.is_transaction_block is False:
            return []
        if self.peak == new_peak:
            return []
        assert new_peak.timestamp is not None

        use_optimization: bool = self.peak is not None and new_peak.prev_transaction_block_hash == self.peak.header_hash
        self.peak = new_peak

        if use_optimization:
            # We don't reinitialize a mempool, just kick removed items
            for coin_record in coin_changes:
                if coin_record.name in self.mempool.removals:
                    item = self.mempool.removals[coin_record.name]
                    self.mempool.remove_from_pool(item)
                    self.remove_seen(item.spend_bundle_name)
        else:
            old_pool = self.mempool
            self.mempool = Mempool(self.mempool_max_total_cost)
            for item in old_pool.spends.values():
                _, result, _ = await self.add_spendbundle(
                    item.spend_bundle, item.npc_result, item.spend_bundle_name,
                    item.program)
                # If the spend bundle was confirmed or conflicting (can no longer be in mempool), it won't be
                # successfully added to the new mempool. In this case, remove it from seen, so in the case of a reorg,
                # it can be resubmitted
                if result != MempoolInclusionStatus.SUCCESS:
                    self.remove_seen(item.spend_bundle_name)

        potential_txs = self.potential_cache.drain()
        txs_added = []
        for item in potential_txs.values():
            cost, status, error = await self.add_spendbundle(
                item.spend_bundle,
                item.npc_result,
                item.spend_bundle_name,
                program=item.program)
            if status == MempoolInclusionStatus.SUCCESS:
                txs_added.append((item.spend_bundle, item.npc_result,
                                  item.spend_bundle_name))
        log.info(
            f"Size of mempool: {len(self.mempool.spends)} spends, cost: {self.mempool.total_mempool_cost} "
            f"minimum fee to get in: {self.mempool.get_min_fee_rate(100000)}")
        return txs_added

    async def get_items_not_in_filter(self,
                                      mempool_filter: PyBIP158,
                                      limit: int = 100) -> List[MempoolItem]:
        items: List[MempoolItem] = []
        counter = 0
        broke_from_inner_loop = False

        # Send 100 with highest fee per cost
        for dic in self.mempool.sorted_spends.values():
            if broke_from_inner_loop:
                break
            for item in dic.values():
                if counter == limit:
                    broke_from_inner_loop = True
                    break
                if mempool_filter.Match(bytearray(item.spend_bundle_name)):
                    continue
                items.append(item)
                counter += 1

        return items
示例#27
0
class Blockchain(BlockchainInterface):
    constants: ConsensusConstants
    constants_json: Dict

    # peak of the blockchain
    _peak_height: Optional[uint32]
    # All blocks in peak path are guaranteed to be included, can include orphan blocks
    __block_records: Dict[bytes32, BlockRecord]
    # all hashes of blocks in block_record by height, used for garbage collection
    __heights_in_cache: Dict[uint32, Set[bytes32]]
    # Defines the path from genesis to the peak, no orphan blocks
    __height_to_hash: Dict[uint32, bytes32]
    # All sub-epoch summaries that have been included in the blockchain from the beginning until and including the peak
    # (height_included, SubEpochSummary). Note: ONLY for the blocks in the path to the peak
    __sub_epoch_summaries: Dict[uint32, SubEpochSummary] = {}
    # Unspent Store
    coin_store: CoinStore
    # Store
    block_store: BlockStore
    # Used to verify blocks in parallel
    pool: ProcessPoolExecutor

    # Whether blockchain is shut down or not
    _shut_down: bool

    # Lock to prevent simultaneous reads and writes
    lock: asyncio.Lock

    @staticmethod
    async def create(
        coin_store: CoinStore,
        block_store: BlockStore,
        consensus_constants: ConsensusConstants,
    ):
        """
        Initializes a blockchain with the BlockRecords from disk, assuming they have all been
        validated. Uses the genesis block given in override_constants, or as a fallback,
        in the consensus constants config.
        """
        self = Blockchain()
        self.lock = asyncio.Lock()  # External lock handled by full node
        cpu_count = multiprocessing.cpu_count()
        if cpu_count > 61:
            cpu_count = 61  # Windows Server 2016 has an issue https://bugs.python.org/issue26903
        num_workers = max(cpu_count - 2, 1)
        self.pool = ProcessPoolExecutor(max_workers=num_workers)
        log.info(f"Started {num_workers} processes for block validation")

        self.constants = consensus_constants
        self.coin_store = coin_store
        self.block_store = block_store
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))
        self._shut_down = False
        await self._load_chain_from_store()
        return self

    def shut_down(self):
        self._shut_down = True
        self.pool.shutdown(wait=True)

    async def _load_chain_from_store(self) -> None:
        """
        Initializes the state of the Blockchain class from the database.
        """
        height_to_hash, sub_epoch_summaries = await self.block_store.get_peak_height_dicts(
        )
        self.__height_to_hash = height_to_hash
        self.__sub_epoch_summaries = sub_epoch_summaries
        self.__block_records = {}
        self.__heights_in_cache = {}
        block_records, peak = await self.block_store.get_block_records_close_to_peak(
            self.constants.BLOCKS_CACHE_SIZE)
        for block in block_records.values():
            self.add_block_record(block)

        if len(block_records) == 0:
            assert peak is None
            self._peak_height = None
            return

        assert peak is not None
        self._peak_height = self.block_record(peak).height
        assert len(self.__height_to_hash) == self._peak_height + 1

    def get_peak(self) -> Optional[BlockRecord]:
        """
        Return the peak of the blockchain
        """
        if self._peak_height is None:
            return None
        return self.height_to_block_record(self._peak_height)

    async def get_full_peak(self) -> Optional[FullBlock]:
        if self._peak_height is None:
            return None
        """ Return list of FullBlocks that are peaks"""
        block = await self.block_store.get_full_block(
            self.height_to_hash(self._peak_height))
        assert block is not None
        return block

    def is_child_of_peak(self, block: UnfinishedBlock) -> bool:
        """
        True if the block is the direct ancestor of the peak
        """
        peak = self.get_peak()
        if peak is None:
            return False

        return block.prev_header_hash == peak.header_hash

    async def get_full_block(self,
                             header_hash: bytes32) -> Optional[FullBlock]:
        return await self.block_store.get_full_block(header_hash)

    async def receive_block(
        self,
        block: FullBlock,
        pre_validation_result: Optional[PreValidationResult] = None,
        fork_point_with_peak: Optional[uint32] = None,
    ) -> Tuple[ReceiveBlockResult, Optional[Err], Optional[uint32]]:
        """
        This method must be called under the blockchain lock
        Adds a new block into the blockchain, if it's valid and connected to the current
        blockchain, regardless of whether it is the child of a head, or another block.
        Returns a header if block is added to head. Returns an error if the block is
        invalid. Also returns the fork height, in the case of a new peak.
        """
        genesis: bool = block.height == 0

        if self.contains_block(block.header_hash):
            return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None

        if not self.contains_block(block.prev_header_hash) and not genesis:
            return (
                ReceiveBlockResult.DISCONNECTED_BLOCK,
                Err.INVALID_PREV_BLOCK_HASH,
                None,
            )

        if pre_validation_result is None:
            if block.height == 0:
                prev_b: Optional[BlockRecord] = None
            else:
                prev_b = self.block_record(block.prev_header_hash)
            sub_slot_iters, difficulty = get_sub_slot_iters_and_difficulty(
                self.constants, block, prev_b, self)
            required_iters, error = validate_finished_header_block(
                self.constants,
                self,
                block.get_block_header(),
                False,
                difficulty,
                sub_slot_iters,
            )

            if error is not None:
                return ReceiveBlockResult.INVALID_BLOCK, error.code, None
        else:
            required_iters = pre_validation_result.required_iters
            assert pre_validation_result.error is None
        assert required_iters is not None
        error_code, _ = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            block.height,
            pre_validation_result.cost_result
            if pre_validation_result is not None else None,
            fork_point_with_peak,
        )
        if error_code is not None:
            return ReceiveBlockResult.INVALID_BLOCK, error_code, None

        block_record = block_to_block_record(
            self.constants,
            self,
            required_iters,
            block,
            None,
        )
        # Always add the block to the database
        await self.block_store.add_full_block(block, block_record)

        self.add_block_record(block_record)

        fork_height: Optional[uint32] = await self._reconsider_peak(
            block_record, genesis, fork_point_with_peak)

        if fork_height is not None:
            return ReceiveBlockResult.NEW_PEAK, None, fork_height
        else:
            return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None

    async def _reconsider_peak(
            self, block_record: BlockRecord, genesis: bool,
            fork_point_with_peak: Optional[uint32]) -> Optional[uint32]:
        """
        When a new block is added, this is called, to check if the new block is the new peak of the chain.
        This also handles reorgs by reverting blocks which are not in the heaviest chain.
        It returns the height of the fork between the previous chain and the new chain, or returns
        None if there was no update to the heaviest chain.
        """
        peak = self.get_peak()
        if genesis:
            if peak is None:
                block: Optional[
                    FullBlock] = await self.block_store.get_full_block(
                        block_record.header_hash)
                assert block is not None

                # Begins a transaction, because we want to ensure that the coin store and block store are only updated
                # in sync.
                await self.block_store.begin_transaction()
                try:
                    await self.coin_store.new_block(block)
                    self.__height_to_hash[uint32(0)] = block.header_hash
                    self._peak_height = uint32(0)
                    await self.block_store.set_peak(block.header_hash)
                    await self.block_store.commit_transaction()
                except Exception:
                    await self.block_store.rollback_transaction()
                    raise
                return uint32(0)
            return None

        assert peak is not None
        if block_record.weight > peak.weight:
            # Find the fork. if the block is just being appended, it will return the peak
            # If no blocks in common, returns -1, and reverts all blocks
            if fork_point_with_peak is not None:
                fork_height: int = fork_point_with_peak
            else:
                fork_height = find_fork_point_in_chain(self, block_record,
                                                       peak)

            # Begins a transaction, because we want to ensure that the coin store and block store are only updated
            # in sync.
            await self.block_store.begin_transaction()
            try:
                # Rollback to fork
                await self.coin_store.rollback_to_block(fork_height)
                # Rollback sub_epoch_summaries
                heights_to_delete = []
                for ses_included_height in self.__sub_epoch_summaries.keys():
                    if ses_included_height > fork_height:
                        heights_to_delete.append(ses_included_height)
                for height in heights_to_delete:
                    log.info(f"delete ses at height {height}")
                    del self.__sub_epoch_summaries[height]

                if len(heights_to_delete) > 0:
                    # remove segments from prev fork
                    log.info(f"remove segments for se above {fork_height}")
                    await self.block_store.delete_sub_epoch_challenge_segments(
                        uint32(fork_height))

                # Collect all blocks from fork point to new peak
                blocks_to_add: List[Tuple[FullBlock, BlockRecord]] = []
                curr = block_record.header_hash

                while fork_height < 0 or curr != self.height_to_hash(
                        uint32(fork_height)):
                    fetched_full_block: Optional[
                        FullBlock] = await self.block_store.get_full_block(curr
                                                                           )
                    fetched_block_record: Optional[
                        BlockRecord] = await self.block_store.get_block_record(
                            curr)
                    assert fetched_full_block is not None
                    assert fetched_block_record is not None
                    blocks_to_add.append(
                        (fetched_full_block, fetched_block_record))
                    if fetched_full_block.height == 0:
                        # Doing a full reorg, starting at height 0
                        break
                    curr = fetched_block_record.prev_hash

                for fetched_full_block, fetched_block_record in reversed(
                        blocks_to_add):
                    self.__height_to_hash[
                        fetched_block_record.
                        height] = fetched_block_record.header_hash
                    if fetched_block_record.is_transaction_block:
                        await self.coin_store.new_block(fetched_full_block)
                    if fetched_block_record.sub_epoch_summary_included is not None:
                        self.__sub_epoch_summaries[
                            fetched_block_record.
                            height] = fetched_block_record.sub_epoch_summary_included

                # Changes the peak to be the new peak
                await self.block_store.set_peak(block_record.header_hash)
                self._peak_height = block_record.height
                await self.block_store.commit_transaction()
            except Exception:
                await self.block_store.rollback_transaction()
                raise

            return uint32(max(fork_height, 0))

        # This is not a heavier block than the heaviest we have seen, so we don't change the coin set
        return None

    def get_next_difficulty(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.DIFFICULTY_STARTING
        return get_next_difficulty(
            self.constants,
            self,
            header_hash,
            curr.height,
            uint64(curr.weight - self.block_record(curr.prev_hash).weight),
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    def get_next_slot_iters(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_block(header_hash)
        curr = self.block_record(header_hash)
        if curr.height <= 2:
            return self.constants.SUB_SLOT_ITERS_STARTING
        return get_next_sub_slot_iters(
            self.constants,
            self,
            header_hash,
            curr.height,
            curr.sub_slot_iters,
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    async def get_sp_and_ip_sub_slots(
        self, header_hash: bytes32
    ) -> Optional[Tuple[Optional[EndOfSubSlotBundle],
                        Optional[EndOfSubSlotBundle]]]:
        block: Optional[FullBlock] = await self.block_store.get_full_block(
            header_hash)
        if block is None:
            return None
        curr_br: BlockRecord = self.block_record(block.header_hash)
        is_overflow = curr_br.overflow

        curr: Optional[FullBlock] = block
        assert curr is not None
        while True:
            if curr_br.first_in_sub_slot:
                curr = await self.block_store.get_full_block(
                    curr_br.header_hash)
                assert curr is not None
                break
            if curr_br.height == 0:
                break
            curr_br = self.block_record(curr_br.prev_hash)

        if len(curr.finished_sub_slots) == 0:
            # This means we got to genesis and still no sub-slots
            return None, None

        ip_sub_slot = curr.finished_sub_slots[-1]

        if not is_overflow:
            # Pos sub-slot is the same as infusion sub slot
            return None, ip_sub_slot

        if len(curr.finished_sub_slots) > 1:
            # Have both sub-slots
            return curr.finished_sub_slots[-2], ip_sub_slot

        prev_curr: Optional[FullBlock] = await self.block_store.get_full_block(
            curr.prev_header_hash)
        if prev_curr is None:
            assert curr.height == 0
            prev_curr = curr
            prev_curr_br = self.block_record(curr.header_hash)
        else:
            prev_curr_br = self.block_record(curr.prev_header_hash)
        assert prev_curr_br is not None
        while prev_curr_br.height > 0:
            if prev_curr_br.first_in_sub_slot:
                prev_curr = await self.block_store.get_full_block(
                    prev_curr_br.header_hash)
                assert prev_curr is not None
                break
            prev_curr_br = self.block_record(prev_curr_br.prev_hash)

        if len(prev_curr.finished_sub_slots) == 0:
            return None, ip_sub_slot
        return prev_curr.finished_sub_slots[-1], ip_sub_slot

    def get_recent_reward_challenges(self) -> List[Tuple[bytes32, uint128]]:
        peak = self.get_peak()
        if peak is None:
            return []
        recent_rc: List[Tuple[bytes32, uint128]] = []
        curr = self.try_block_record(peak.prev_hash)
        while curr is not None and len(
                recent_rc) < 2 * self.constants.MAX_SUB_SLOT_BLOCKS:
            recent_rc.append(
                (curr.reward_infusion_new_challenge, curr.total_iters))
            if curr.first_in_sub_slot:
                assert curr.finished_reward_slot_hashes is not None
                sub_slot_total_iters = curr.ip_sub_slot_total_iters(
                    self.constants)
                # Start from the most recent
                for rc in reversed(curr.finished_reward_slot_hashes):
                    recent_rc.append((rc, sub_slot_total_iters))
                    sub_slot_total_iters = uint128(sub_slot_total_iters -
                                                   curr.sub_slot_iters)
            curr = self.try_block_record(curr.prev_hash)
        return list(reversed(recent_rc))

    async def validate_unfinished_block(
            self,
            block: UnfinishedBlock,
            skip_overflow_ss_validation=True) -> PreValidationResult:
        if (not self.contains_block(block.prev_header_hash)
                and not block.prev_header_hash
                == self.constants.GENESIS_CHALLENGE):
            return PreValidationResult(
                uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None)

        unfinished_header_block = UnfinishedHeaderBlock(
            block.finished_sub_slots,
            block.reward_chain_block,
            block.challenge_chain_sp_proof,
            block.reward_chain_sp_proof,
            block.foliage,
            block.foliage_transaction_block,
            b"",
        )
        prev_b = self.try_block_record(
            unfinished_header_block.prev_header_hash)
        sub_slot_iters, difficulty = get_sub_slot_iters_and_difficulty(
            self.constants, unfinished_header_block, prev_b, self)
        required_iters, error = validate_unfinished_header_block(
            self.constants,
            self,
            unfinished_header_block,
            False,
            difficulty,
            sub_slot_iters,
            skip_overflow_ss_validation,
        )

        if error is not None:
            return PreValidationResult(uint16(error.code.value), None, None)

        prev_height = (-1 if block.prev_header_hash
                       == self.constants.GENESIS_CHALLENGE else
                       self.block_record(block.prev_header_hash).height)

        error_code, cost_result = await validate_block_body(
            self.constants,
            self,
            self.block_store,
            self.coin_store,
            self.get_peak(),
            block,
            uint32(prev_height + 1),
            None,
        )

        if error_code is not None:
            return PreValidationResult(uint16(error_code.value), None, None)

        return PreValidationResult(None, required_iters, cost_result)

    async def pre_validate_blocks_multiprocessing(
        self,
        blocks: List[FullBlock],
        validate_transactions: bool = True
    ) -> Optional[List[PreValidationResult]]:
        return await pre_validate_blocks_multiprocessing(
            self.constants, self.constants_json, self, blocks, self.pool,
            validate_transactions, True)

    def contains_block(self, header_hash: bytes32) -> bool:
        """
        True if we have already added this block to the chain. This may return false for orphan blocks
        that we have added but no longer keep in memory.
        """
        return header_hash in self.__block_records

    def block_record(self, header_hash: bytes32) -> BlockRecord:
        return self.__block_records[header_hash]

    def height_to_block_record(self, height: uint32) -> BlockRecord:
        header_hash = self.height_to_hash(height)
        return self.block_record(header_hash)

    def get_ses_heights(self) -> List[uint32]:
        return sorted(self.__sub_epoch_summaries.keys())

    def get_ses(self, height: uint32) -> SubEpochSummary:
        return self.__sub_epoch_summaries[height]

    def height_to_hash(self, height: uint32) -> Optional[bytes32]:
        return self.__height_to_hash[height]

    def contains_height(self, height: uint32) -> bool:
        return height in self.__height_to_hash

    def get_peak_height(self) -> Optional[uint32]:
        return self._peak_height

    async def warmup(self, fork_point: uint32):
        """
        Loads blocks into the cache. The blocks loaded include all blocks from
        fork point - BLOCKS_CACHE_SIZE up to and including the fork_point.

        Args:
            fork_point: the last block height to load in the cache

        """
        if self._peak_height is None:
            return
        block_records = await self.block_store.get_block_records_in_range(
            max(fork_point - self.constants.BLOCKS_CACHE_SIZE, uint32(0)),
            fork_point)
        for block_record in block_records.values():
            self.add_block_record(block_record)

    def clean_block_record(self, height: int):
        """
        Clears all block records in the cache which have block_record < height.
        Args:
            height: Minimum height that we need to keep in the cache
        """
        if height < 0:
            return
        blocks_to_remove = self.__heights_in_cache.get(uint32(height), None)
        while blocks_to_remove is not None and height >= 0:
            for header_hash in blocks_to_remove:
                del self.__block_records[header_hash]  # remove from blocks
            del self.__heights_in_cache[uint32(
                height)]  # remove height from heights in cache

            height = height - 1
            blocks_to_remove = self.__heights_in_cache.get(
                uint32(height), None)

    def clean_block_records(self):
        """
        Cleans the cache so that we only maintain relevant blocks. This removes
        block records that have height < peak - BLOCKS_CACHE_SIZE.
        These blocks are necessary for calculating future difficulty adjustments.
        """

        if len(self.__block_records) < self.constants.BLOCKS_CACHE_SIZE:
            return

        peak = self.get_peak()
        assert peak is not None
        if peak.height - self.constants.BLOCKS_CACHE_SIZE < 0:
            return
        self.clean_block_record(peak.height - self.constants.BLOCKS_CACHE_SIZE)

    async def get_block_records_in_range(
            self, start: int, stop: int) -> Dict[bytes32, BlockRecord]:
        return await self.block_store.get_block_records_in_range(start, stop)

    async def get_header_blocks_in_range(
            self, start: int, stop: int) -> Dict[bytes32, HeaderBlock]:
        return await self.block_store.get_header_blocks_in_range(start, stop)

    async def get_block_record_from_db(
            self, header_hash: bytes32) -> Optional[BlockRecord]:
        if header_hash in self.__block_records:
            return self.__block_records[header_hash]
        return await self.block_store.get_block_record(header_hash)

    def remove_block_record(self, header_hash: bytes32):
        sbr = self.block_record(header_hash)
        del self.__block_records[header_hash]
        self.__heights_in_cache[sbr.height].remove(header_hash)

    def add_block_record(self, block_record: BlockRecord):
        """
        Adds a block record to the cache.
        """

        self.__block_records[block_record.header_hash] = block_record
        if block_record.height not in self.__heights_in_cache.keys():
            self.__heights_in_cache[block_record.height] = set()
        self.__heights_in_cache[block_record.height].add(
            block_record.header_hash)

    async def get_header_block(self,
                               header_hash: bytes32) -> Optional[HeaderBlock]:
        block = await self.block_store.get_full_block(header_hash)
        if block is None:
            return None
        return block.get_block_header()

    async def persist_sub_epoch_challenge_segments(
            self, sub_epoch_summary_height: uint32,
            segments: List[SubEpochChallengeSegment]):
        return await self.block_store.persist_sub_epoch_challenge_segments(
            sub_epoch_summary_height, segments)

    async def get_sub_epoch_challenge_segments(
        self,
        sub_epoch_summary_height: uint32,
    ) -> Optional[List[SubEpochChallengeSegment]]:
        segments: Optional[List[
            SubEpochChallengeSegment]] = await self.block_store.get_sub_epoch_challenge_segments(
                sub_epoch_summary_height)
        if segments is None:
            return None
        return segments
示例#28
0
def do_test1(workers):
    param = {"max_workers": workers}
    start = round(time.time() + _start_warm_up)
    input = input_generator(workers, start)
    loop = asyncio.new_event_loop()

    lock = threading.Lock()
    tresult = []
    presult = []
    cresult = []

    def result_checker(list, lock, fut):
        with lock:
            try:
                list.append(fut.result())
            except Exception as e:
                list.append(e)

    texec = ThreadPoolExecutor(**param)
    pexec = ProcessPoolExecutor(**param)
    cexec = CoroutinePoolExecutor(**param, loop=loop)

    for x in input:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))

        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))

        future = cexec.submit(async_wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, cresult, lock))

    texec.shutdown(False)
    pexec.shutdown(False)
    loop.run_until_complete(cexec.shutdown(False))

    try:
        loop.run_until_complete(cexec.shutdown(True))
        texec.shutdown(True)
        pexec.shutdown(True)
    finally:
        loop.close()

    tresult = [round((x - start) / _precision) for x in tresult]
    presult = [round((x - start) / _precision) for x in presult]
    cresult = [round((x - start) / _precision) for x in cresult]

    result = True
    for (t, p, c) in zip(tresult, presult, cresult):
        result = result and (t == p)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (p == c)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (c == t)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
    return result
class MempoolManager:
    def __init__(self, coin_store: CoinStore,
                 consensus_constants: ConsensusConstants):
        self.constants: ConsensusConstants = consensus_constants
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))

        # Transactions that were unable to enter mempool, used for retry. (they were invalid)
        self.potential_txs: Dict[bytes32, Tuple[SpendBundle, CostResult,
                                                bytes32]] = {}
        # Keep track of seen spend_bundles
        self.seen_bundle_hashes: Dict[bytes32, bytes32] = {}

        self.coin_store = coin_store

        self.mempool_max_total_cost = int(self.constants.MAX_BLOCK_COST_CLVM *
                                          self.constants.MEMPOOL_BLOCK_BUFFER)
        self.potential_cache_max_total_cost = int(
            self.constants.MAX_BLOCK_COST_CLVM *
            self.constants.MEMPOOL_BLOCK_BUFFER)
        self.potential_cache_cost: int = 0
        self.seen_cache_size = 10000
        self.pool = ProcessPoolExecutor(max_workers=1)

        # The mempool will correspond to a certain peak
        self.peak: Optional[BlockRecord] = None
        self.mempool: Mempool = Mempool(self.mempool_max_total_cost)

    def shut_down(self):
        self.pool.shutdown(wait=True)

    async def create_bundle_from_mempool(
        self, peak_header_hash: bytes32
    ) -> Optional[Tuple[SpendBundle, List[Coin], List[Coin]]]:
        """
        Returns aggregated spendbundle that can be used for creating new block,
        additions and removals in that spend_bundle
        """
        if (self.peak is None or self.peak.header_hash != peak_header_hash
                or self.peak.height <= self.constants.INITIAL_FREEZE_PERIOD):
            return None

        cost_sum = 0  # Checks that total cost does not exceed block maximum
        fee_sum = 0  # Checks that total fees don't exceed 64 bits
        spend_bundles: List[SpendBundle] = []
        removals = []
        additions = []
        broke_from_inner_loop = False
        log.info(
            f"Starting to make block, max cost: {self.constants.MAX_BLOCK_COST_CLVM}"
        )
        for dic in self.mempool.sorted_spends.values():
            if broke_from_inner_loop:
                break
            for item in dic.values():
                log.info(f"Cumulative cost: {cost_sum}")
                if (item.cost_result.cost + cost_sum <=
                        self.constants.MAX_BLOCK_COST_CLVM and
                        item.fee + fee_sum <= self.constants.MAX_COIN_AMOUNT):
                    spend_bundles.append(item.spend_bundle)
                    cost_sum += item.cost_result.cost
                    fee_sum += item.fee
                    removals.extend(item.removals)
                    additions.extend(item.additions)
                else:
                    broke_from_inner_loop = True
                    break
        if len(spend_bundles) > 0:
            return SpendBundle.aggregate(spend_bundles), additions, removals
        else:
            return None

    def get_filter(self) -> bytes:
        all_transactions: Set[bytes32] = set()
        byte_array_list = []
        for key, _ in self.mempool.spends.items():
            if key not in all_transactions:
                all_transactions.add(key)
                byte_array_list.append(bytearray(key))

        tx_filter: PyBIP158 = PyBIP158(byte_array_list)
        return bytes(tx_filter.GetEncoded())

    def is_fee_enough(self, fees: uint64, cost: uint64) -> bool:
        """
        Determines whether any of the pools can accept a transaction with a given fees
        and cost.
        """
        if cost == 0:
            return False
        fees_per_cost = fees / cost
        if not self.mempool.at_full_capacity(
                cost) or fees_per_cost > self.mempool.get_min_fee_rate(cost):
            return True
        return False

    def add_and_maybe_pop_seen(self, spend_name: bytes32):
        self.seen_bundle_hashes[spend_name] = spend_name
        while len(self.seen_bundle_hashes) > self.seen_cache_size:
            first_in = list(self.seen_bundle_hashes.keys())[0]
            self.seen_bundle_hashes.pop(first_in)

    def seen(self, bundle_hash: bytes32) -> bool:
        """ Return true if we saw this spendbundle before """
        return bundle_hash in self.seen_bundle_hashes

    def remove_seen(self, bundle_hash: bytes32):
        if bundle_hash in self.seen_bundle_hashes:
            self.seen_bundle_hashes.pop(bundle_hash)

    def get_min_fee_increase(self):
        # 0.00001 XCH
        return 10000000

    def can_replace(self, conflicting_items, removals, fees, fees_per_cost):
        conflicting_fees = 0
        conflicting_cost = 0
        for item in conflicting_items.values():
            conflicting_fees += item.fee
            conflicting_cost += item.cost_result.cost

            # All coins spent in all conflicting items must also be spent in
            # the new item
            for coin in item.removals:
                if coin.name() not in removals:
                    return False

        # New item must have higher fee per cost
        if fees_per_cost <= conflicting_fees / conflicting_cost:
            return False

        # New item must increase the total fee at least by a certain amount
        if fees < conflicting_fees + self.get_min_fee_increase():
            return False

        return True

    async def pre_validate_spendbundle(self,
                                       new_spend: SpendBundle) -> CostResult:
        """
        Errors are included within the cached_result.
        This runs in another process so we don't block the main thread
        """
        start_time = time.time()
        cached_result_bytes = await asyncio.get_running_loop().run_in_executor(
            self.pool, validate_transaction_multiprocess, self.constants_json,
            bytes(new_spend))
        end_time = time.time()
        log.info(
            f"It took {end_time - start_time} to pre validate transaction")
        return CostResult.from_bytes(cached_result_bytes)

    async def add_spendbundle(
        self,
        new_spend: SpendBundle,
        cost_result: CostResult,
        spend_name: bytes32,
        validate_signature=True,
    ) -> Tuple[Optional[uint64], MempoolInclusionStatus, Optional[Err]]:
        """
        Tries to add spendbundle to either self.mempools or to_pool if it's specified.
        Returns true if it's added in any of pools, Returns error if it fails.
        """
        start_time = time.time()
        if self.peak is None:
            return None, MempoolInclusionStatus.FAILED, Err.MEMPOOL_NOT_INITIALIZED

        npc_list = cost_result.npc_list
        cost = cost_result.cost

        log.debug(f"Cost: {cost}")

        if cost > self.constants.MAX_BLOCK_COST_CLVM:
            return None, MempoolInclusionStatus.FAILED, Err.BLOCK_COST_EXCEEDS_MAX

        if cost_result.error is not None:
            return None, MempoolInclusionStatus.FAILED, Err(cost_result.error)
        # build removal list
        removal_names: List[bytes32] = new_spend.removal_names()

        additions = additions_for_npc(npc_list)

        additions_dict: Dict[bytes32, Coin] = {}
        for add in additions:
            additions_dict[add.name()] = add

        addition_amount = uint64(0)
        # Check additions for max coin amount
        for coin in additions:
            if coin.amount > self.constants.MAX_COIN_AMOUNT:
                return (
                    None,
                    MempoolInclusionStatus.FAILED,
                    Err.COIN_AMOUNT_EXCEEDS_MAXIMUM,
                )
            addition_amount = uint64(addition_amount + coin.amount)
        # Check for duplicate outputs
        addition_counter = collections.Counter(_.name() for _ in additions)
        for k, v in addition_counter.items():
            if v > 1:
                return None, MempoolInclusionStatus.FAILED, Err.DUPLICATE_OUTPUT
        # Check for duplicate inputs
        removal_counter = collections.Counter(name for name in removal_names)
        for k, v in removal_counter.items():
            if v > 1:
                return None, MempoolInclusionStatus.FAILED, Err.DOUBLE_SPEND
        # Skip if already added
        if spend_name in self.mempool.spends:
            return uint64(cost), MempoolInclusionStatus.SUCCESS, None

        removal_record_dict: Dict[bytes32, CoinRecord] = {}
        removal_coin_dict: Dict[bytes32, Coin] = {}
        unknown_unspent_error: bool = False
        removal_amount = uint64(0)
        for name in removal_names:
            removal_record = await self.coin_store.get_coin_record(name)
            if removal_record is None and name not in additions_dict:
                unknown_unspent_error = True
                break
            elif name in additions_dict:
                removal_coin = additions_dict[name]
                # TODO(straya): what timestamp to use here?
                removal_record = CoinRecord(
                    removal_coin,
                    uint32(
                        self.peak.height +
                        1),  # In mempool, so will be included in next height
                    uint32(0),
                    False,
                    False,
                    uint64(int(time.time())),
                )

            assert removal_record is not None
            removal_amount = uint64(removal_amount +
                                    removal_record.coin.amount)
            removal_record_dict[name] = removal_record
            removal_coin_dict[name] = removal_record.coin
        if unknown_unspent_error:
            return None, MempoolInclusionStatus.FAILED, Err.UNKNOWN_UNSPENT

        if addition_amount > removal_amount:
            print(addition_amount, removal_amount)
            return None, MempoolInclusionStatus.FAILED, Err.MINTING_COIN

        fees = removal_amount - addition_amount
        assert_fee_sum: uint64 = uint64(0)

        for npc in npc_list:
            if ConditionOpcode.RESERVE_FEE in npc.condition_dict:
                fee_list: List[ConditionWithArgs] = npc.condition_dict[
                    ConditionOpcode.RESERVE_FEE]
                for cvp in fee_list:
                    fee = int_from_bytes(cvp.vars[0])
                    assert_fee_sum = assert_fee_sum + fee
        if fees < assert_fee_sum:
            return (
                None,
                MempoolInclusionStatus.FAILED,
                Err.RESERVE_FEE_CONDITION_FAILED,
            )

        if cost == 0:
            return None, MempoolInclusionStatus.FAILED, Err.UNKNOWN

        fees_per_cost: float = fees / cost
        # If pool is at capacity check the fee, if not then accept even without the fee
        if self.mempool.at_full_capacity(cost):
            if fees == 0:
                return None, MempoolInclusionStatus.FAILED, Err.INVALID_FEE_LOW_FEE
            if fees_per_cost <= self.mempool.get_min_fee_rate(cost):
                return None, MempoolInclusionStatus.FAILED, Err.INVALID_FEE_LOW_FEE
        # Check removals against UnspentDB + DiffStore + Mempool + SpendBundle
        # Use this information later when constructing a block
        fail_reason, conflicts = await self.check_removals(removal_record_dict)
        # If there is a mempool conflict check if this spendbundle has a higher fee per cost than all others
        tmp_error: Optional[Err] = None
        conflicting_pool_items: Dict[bytes32, MempoolItem] = {}
        if fail_reason is Err.MEMPOOL_CONFLICT:
            for conflicting in conflicts:
                sb: MempoolItem = self.mempool.removals[conflicting.name()]
                conflicting_pool_items[sb.name] = sb
            if not self.can_replace(conflicting_pool_items,
                                    removal_record_dict, fees, fees_per_cost):
                self.add_to_potential_tx_set(new_spend, spend_name,
                                             cost_result)
                return (
                    uint64(cost),
                    MempoolInclusionStatus.PENDING,
                    Err.MEMPOOL_CONFLICT,
                )

        elif fail_reason:
            return None, MempoolInclusionStatus.FAILED, fail_reason

        if tmp_error:
            return None, MempoolInclusionStatus.FAILED, tmp_error

        # Verify conditions, create hash_key list for aggsig check
        pks: List[G1Element] = []
        msgs: List[bytes32] = []
        error: Optional[Err] = None
        coin_announcements_in_spend: Set[
            bytes32] = coin_announcements_names_for_npc(npc_list)
        puzzle_announcements_in_spend: Set[
            bytes32] = puzzle_announcements_names_for_npc(npc_list)
        for npc in npc_list:
            coin_record: CoinRecord = removal_record_dict[npc.coin_name]
            # Check that the revealed removal puzzles actually match the puzzle hash
            if npc.puzzle_hash != coin_record.coin.puzzle_hash:
                log.warning(
                    "Mempool rejecting transaction because of wrong puzzle_hash"
                )
                log.warning(
                    f"{npc.puzzle_hash} != {coin_record.coin.puzzle_hash}")
                return None, MempoolInclusionStatus.FAILED, Err.WRONG_PUZZLE_HASH

            chialisp_height = (self.peak.prev_transaction_block_height
                               if not self.peak.is_transaction_block else
                               self.peak.height)
            error = mempool_check_conditions_dict(
                coin_record,
                coin_announcements_in_spend,
                puzzle_announcements_in_spend,
                npc.condition_dict,
                uint32(chialisp_height),
            )

            if error:
                if error is Err.ASSERT_HEIGHT_ABSOLUTE_FAILED or error is Err.ASSERT_HEIGHT_RELATIVE_FAILED:
                    self.add_to_potential_tx_set(new_spend, spend_name,
                                                 cost_result)
                    return uint64(cost), MempoolInclusionStatus.PENDING, error
                break

            if validate_signature:
                for pk, message in pkm_pairs_for_conditions_dict(
                        npc.condition_dict, npc.coin_name,
                        self.constants.AGG_SIG_ME_ADDITIONAL_DATA):
                    pks.append(pk)
                    msgs.append(message)
        if error:
            return None, MempoolInclusionStatus.FAILED, error

        if validate_signature:
            # Verify aggregated signature
            if not AugSchemeMPL.aggregate_verify(
                    pks, msgs, new_spend.aggregated_signature):
                log.warning(
                    f"Aggsig validation error {pks} {msgs} {new_spend}")
                return None, MempoolInclusionStatus.FAILED, Err.BAD_AGGREGATE_SIGNATURE
        # Remove all conflicting Coins and SpendBundles
        if fail_reason:
            mempool_item: MempoolItem
            for mempool_item in conflicting_pool_items.values():
                self.mempool.remove_from_pool(mempool_item)

        removals: List[Coin] = [coin for coin in removal_coin_dict.values()]
        new_item = MempoolItem(new_spend, uint64(fees), cost_result,
                               spend_name, additions, removals)
        self.mempool.add_to_pool(new_item, additions, removal_coin_dict)
        log.info(f"add_spendbundle took {time.time() - start_time} seconds")
        return uint64(cost), MempoolInclusionStatus.SUCCESS, None

    async def check_removals(
        self, removals: Dict[bytes32,
                             CoinRecord]) -> Tuple[Optional[Err], List[Coin]]:
        """
        This function checks for double spends, unknown spends and conflicting transactions in mempool.
        Returns Error (if any), dictionary of Unspents, list of coins with conflict errors (if any any).
        Note that additions are not checked for duplicates, because having duplicate additions requires also
        having duplicate removals.
        """
        assert self.peak is not None
        conflicts: List[Coin] = []

        for record in removals.values():
            removal = record.coin
            # 1. Checks if it's been spent already
            if record.spent == 1:
                return Err.DOUBLE_SPEND, []
            # 2. Checks if there's a mempool conflict
            if removal.name() in self.mempool.removals:
                conflicts.append(removal)

        if len(conflicts) > 0:
            return Err.MEMPOOL_CONFLICT, conflicts
        # 5. If coins can be spent return list of unspents as we see them in local storage
        return None, []

    def add_to_potential_tx_set(self, spend: SpendBundle, spend_name: bytes32,
                                cost_result: CostResult):
        """
        Adds SpendBundles that have failed to be added to the pool in potential tx set.
        This is later used to retry to add them.
        """
        if spend_name in self.potential_txs:
            return

        self.potential_txs[spend_name] = spend, cost_result, spend_name
        self.potential_cache_cost += cost_result.cost

        while self.potential_cache_cost > self.potential_cache_max_total_cost:
            first_in = list(self.potential_txs.keys())[0]
            self.potential_cache_max_total_cost -= self.potential_txs[
                first_in][1].cost
            self.potential_txs.pop(first_in)

    def get_spendbundle(self, bundle_hash: bytes32) -> Optional[SpendBundle]:
        """ Returns a full SpendBundle if it's inside one the mempools"""
        if bundle_hash in self.mempool.spends:
            return self.mempool.spends[bundle_hash].spend_bundle
        return None

    def get_mempool_item(self, bundle_hash: bytes32) -> Optional[MempoolItem]:
        """ Returns a MempoolItem if it's inside one the mempools"""
        if bundle_hash in self.mempool.spends:
            return self.mempool.spends[bundle_hash]
        return None

    async def new_peak(
        self, new_peak: Optional[BlockRecord]
    ) -> List[Tuple[SpendBundle, CostResult, bytes32]]:
        """
        Called when a new peak is available, we try to recreate a mempool for the new tip.
        """
        if new_peak is None:
            return []
        if self.peak == new_peak:
            return []
        if new_peak.height <= self.constants.INITIAL_FREEZE_PERIOD:
            return []

        self.peak = new_peak

        old_pool = self.mempool
        self.mempool = Mempool(self.mempool_max_total_cost)

        for item in old_pool.spends.values():
            await self.add_spendbundle(item.spend_bundle, item.cost_result,
                                       item.spend_bundle_name, False)

        potential_txs_copy = self.potential_txs.copy()
        self.potential_txs = {}
        txs_added = []
        for tx, cached_result, cached_name in potential_txs_copy.values():
            cost, status, error = await self.add_spendbundle(
                tx, cached_result, cached_name)
            if status == MempoolInclusionStatus.SUCCESS:
                txs_added.append((tx, cached_result, cached_name))
        log.debug(
            f"Size of mempool: {len(self.mempool.spends)} spends, cost: {self.mempool.total_mempool_cost} "
            f"minimum fee to get in: {self.mempool.get_min_fee_rate(100000)}")
        return txs_added

    async def get_items_not_in_filter(
            self, mempool_filter: PyBIP158) -> List[MempoolItem]:
        items: List[MempoolItem] = []
        checked_items: Set[bytes32] = set()

        for key, item in self.mempool.spends.items():
            if key in checked_items:
                continue
            if mempool_filter.Match(bytearray(key)):
                checked_items.add(key)
                continue
            checked_items.add(key)
            items.append(item)

        return items
示例#30
0
def do_test1(workers):
    param = {"max_workers": workers}
    start = round(time.time() + _start_warm_up)
    input = input_generator(workers, start)
    loop = asyncio.new_event_loop()

    lock = threading.Lock()
    tresult = []
    presult = []
    cresult = []

    def result_checker(list, lock, fut):
        with lock:
            try:
                list.append(fut.result())
            except Exception as e:
                list.append(e)

    texec = ThreadPoolExecutor(**param)
    pexec = ProcessPoolExecutor(**param)
    cexec = CoroutinePoolExecutor(**param, loop=loop)

    for x in input:
        future = texec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, tresult, lock))

        future = pexec.submit(wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, presult, lock))

        future = cexec.submit(async_wake_at, x)
        future.add_done_callback(
            functools.partial(result_checker, cresult, lock))

    texec.shutdown(False)
    pexec.shutdown(False)
    loop.run_until_complete(cexec.shutdown(False))

    try:
        loop.run_until_complete(cexec.shutdown(True))
        texec.shutdown(True)
        pexec.shutdown(True)
    finally:
        loop.close()

    tresult = [round((x - start) / _precision) for x in tresult]
    presult = [round((x - start) / _precision) for x in presult]
    cresult = [round((x - start) / _precision) for x in cresult]

    result = True
    for (t, p, c) in zip(tresult, presult, cresult):
        result = result and (t == p)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (p == c)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
        result = result and (c == t)
        if not result:
            print(tresult)
            print(presult)
            print(cresult)
            print(t, p, c)
            assert False
    return result
class WalletBlockchain(BlockchainInterface):
    constants: ConsensusConstants
    constants_json: Dict
    # peak of the blockchain
    peak_height: Optional[uint32]
    # All sub blocks in peak path are guaranteed to be included, can include orphan sub-blocks
    __sub_blocks: Dict[bytes32, SubBlockRecord]
    # Defines the path from genesis to the peak, no orphan sub-blocks
    __height_to_hash: Dict[uint32, bytes32]
    # all hashes of sub blocks in sub_block_record by height, used for garbage collection
    __heights_in_cache: Dict[uint32, Set[bytes32]]
    # All sub-epoch summaries that have been included in the blockchain from the beginning until and including the peak
    # (height_included, SubEpochSummary). Note: ONLY for the sub-blocks in the path to the peak
    __sub_epoch_summaries: Dict[uint32, SubEpochSummary] = {}
    # Unspent Store
    coin_store: WalletCoinStore
    # Store
    block_store: WalletBlockStore
    # Used to verify blocks in parallel
    pool: ProcessPoolExecutor

    coins_of_interest_received: Any
    reorg_rollback: Any

    # Whether blockchain is shut down or not
    _shut_down: bool

    # Lock to prevent simultaneous reads and writes
    lock: asyncio.Lock
    log: logging.Logger

    @staticmethod
    async def create(
        block_store: WalletBlockStore,
        consensus_constants: ConsensusConstants,
        coins_of_interest_received:
        Callable,  # f(removals: List[Coin], additions: List[Coin], height: uint32)
        reorg_rollback: Callable,
    ):
        """
        Initializes a blockchain with the SubBlockRecords from disk, assuming they have all been
        validated. Uses the genesis block given in override_constants, or as a fallback,
        in the consensus constants config.
        """
        self = WalletBlockchain()
        self.lock = asyncio.Lock()  # External lock handled by full node
        cpu_count = multiprocessing.cpu_count()
        if cpu_count > 61:
            cpu_count = 61  # Windows Server 2016 has an issue https://bugs.python.org/issue26903
        num_workers = max(cpu_count - 2, 1)
        self.pool = ProcessPoolExecutor(max_workers=num_workers)
        log.info(f"Started {num_workers} processes for block validation")
        self.constants = consensus_constants
        self.constants_json = recurse_jsonify(
            dataclasses.asdict(self.constants))
        self.block_store = block_store
        self._shut_down = False
        self.coins_of_interest_received = coins_of_interest_received
        self.reorg_rollback = reorg_rollback
        self.log = logging.getLogger(__name__)
        await self._load_chain_from_store()
        return self

    def shut_down(self):
        self._shut_down = True
        self.pool.shutdown(wait=True)

    async def _load_chain_from_store(self) -> None:
        """
        Initializes the state of the Blockchain class from the database.
        """
        height_to_hash, sub_epoch_summaries = await self.block_store.get_peak_heights_dicts(
        )
        self.__height_to_hash = height_to_hash
        self.__sub_epoch_summaries = sub_epoch_summaries
        self.__sub_blocks = {}
        self.__heights_in_cache = {}
        sub_blocks, peak = await self.block_store.get_sub_block_records_close_to_peak(
            self.constants.SUB_BLOCKS_CACHE_SIZE)
        for sub_block in sub_blocks.values():
            self.add_sub_block(sub_block)

        if len(sub_blocks) == 0:
            assert peak is None
            self.peak_height = None
            return

        assert peak is not None
        self.peak_height = self.sub_block_record(peak).height
        assert len(self.__height_to_hash) == self.peak_height + 1

    def get_peak(self) -> Optional[SubBlockRecord]:
        """
        Return the peak of the blockchain
        """
        if self.peak_height is None:
            return None
        return self.height_to_sub_block_record(self.peak_height)

    async def get_full_peak(self) -> Optional[HeaderBlock]:
        """ Return a peak transaction block"""
        if self.peak_height is None:
            return None
        curr: Optional[SubBlockRecord] = self.height_to_sub_block_record(
            self.peak_height)
        while curr is not None and not curr.is_block:
            curr = self.try_sub_block(curr.prev_hash)
        if curr is None:
            return None
        block = await self.block_store.get_header_block(curr.header_hash)
        assert block is not None
        return block

    def is_child_of_peak(self, block: UnfinishedBlock) -> bool:
        """
        True iff the block is the direct ancestor of the peak
        """
        peak = self.get_peak()
        if peak is None:
            return False

        return block.prev_header_hash == peak.header_hash

    async def get_full_block(self,
                             header_hash: bytes32) -> Optional[HeaderBlock]:
        return await self.block_store.get_header_block(header_hash)

    async def receive_block(
        self,
        block_record: HeaderBlockRecord,
        pre_validation_result: Optional[PreValidationResult] = None,
        trusted: bool = False,
        fork_point_with_peak: Optional[uint32] = None,
    ) -> Tuple[ReceiveBlockResult, Optional[Err], Optional[uint32]]:
        """
        Adds a new block into the blockchain, if it's valid and connected to the current
        blockchain, regardless of whether it is the child of a head, or another block.
        Returns a header if block is added to head. Returns an error if the block is
        invalid. Also returns the fork height, in the case of a new peak.
        """
        block = block_record.header
        genesis: bool = block.height == 0

        if self.contains_sub_block(block.header_hash):
            return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None

        if not self.contains_sub_block(block.prev_header_hash) and not genesis:
            return (
                ReceiveBlockResult.DISCONNECTED_BLOCK,
                Err.INVALID_PREV_BLOCK_HASH,
                None,
            )

        if block.height == 0:
            prev_sb: Optional[SubBlockRecord] = None
        else:
            prev_sb = self.sub_block_record(block.prev_header_hash)
        sub_slot_iters, difficulty = get_sub_slot_iters_and_difficulty(
            self.constants, block, prev_sb, self)

        if trusted is False and pre_validation_result is None:
            required_iters, error = validate_finished_header_block(
                self.constants, self, block, False, difficulty, sub_slot_iters)
        elif trusted:
            unfinished_header_block = UnfinishedHeaderBlock(
                block.finished_sub_slots,
                block.reward_chain_sub_block.get_unfinished(),
                block.challenge_chain_sp_proof,
                block.reward_chain_sp_proof,
                block.foliage_sub_block,
                block.foliage_block,
                block.transactions_filter,
            )

            required_iters, val_error = validate_unfinished_header_block(
                self.constants, self, unfinished_header_block, False,
                difficulty, sub_slot_iters, False, True)
            error = ValidationError(
                Err(val_error)) if val_error is not None else None
        else:
            assert pre_validation_result is not None
            required_iters = pre_validation_result.required_iters
            error = (ValidationError(Err(pre_validation_result.error))
                     if pre_validation_result.error is not None else None)

        if error is not None:
            return ReceiveBlockResult.INVALID_BLOCK, error.code, None
        assert required_iters is not None

        sub_block = block_to_sub_block_record(
            self.constants,
            self,
            required_iters,
            None,
            block,
        )

        # Always add the block to the database
        await self.block_store.add_block_record(block_record, sub_block)
        self.add_sub_block(sub_block)
        self.clean_sub_block_record(sub_block.height -
                                    self.constants.SUB_BLOCKS_CACHE_SIZE)

        fork_height: Optional[uint32] = await self._reconsider_peak(
            sub_block, genesis, fork_point_with_peak)
        if fork_height is not None:
            self.log.info(
                f"💰 Updated wallet peak to sub height {sub_block.height}, weight {sub_block.weight}, "
            )
            return ReceiveBlockResult.NEW_PEAK, None, fork_height
        else:
            return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None

    async def _reconsider_peak(
            self, sub_block: SubBlockRecord, genesis: bool,
            fork_point_with_peak: Optional[uint32]) -> Optional[uint32]:
        """
        When a new block is added, this is called, to check if the new block is the new peak of the chain.
        This also handles reorgs by reverting blocks which are not in the heaviest chain.
        It returns the height of the fork between the previous chain and the new chain, or returns
        None if there was no update to the heaviest chain.
        """
        peak = self.get_peak()
        if genesis:
            if peak is None:
                block: Optional[
                    HeaderBlockRecord] = await self.block_store.get_header_block_record(
                        sub_block.header_hash)
                assert block is not None
                self.__height_to_hash[uint32(0)] = block.header_hash
                for removed in block.removals:
                    self.log.debug(f"Removed: {removed.name()}")
                await self.coins_of_interest_received(block.removals,
                                                      block.additions,
                                                      block.height)
                self.peak_height = uint32(0)
                return uint32(0)
            return None

        assert peak is not None
        if sub_block.weight > peak.weight:
            # Find the fork. if the block is just being appended, it will return the peak
            # If no blocks in common, returns -1, and reverts all blocks
            if fork_point_with_peak is not None:
                fork_h: int = fork_point_with_peak
            else:
                fork_h = find_fork_point_in_chain(self, sub_block, peak)

            # Rollback to fork
            self.log.debug(
                f"fork_h: {fork_h}, SB: {sub_block.height}, peak: {peak.height}"
            )
            await self.reorg_rollback(fork_h)

            # Rollback sub_epoch_summaries
            heights_to_delete = []
            for ses_included_height in self.__sub_epoch_summaries.keys():
                if ses_included_height > fork_h:
                    heights_to_delete.append(ses_included_height)
            for height in heights_to_delete:
                del self.__sub_epoch_summaries[height]

            # Collect all blocks from fork point to new peak
            blocks_to_add: List[Tuple[HeaderBlockRecord, SubBlockRecord]] = []
            curr = sub_block.header_hash
            while fork_h < 0 or curr != self.height_to_hash(uint32(fork_h)):
                fetched_block: Optional[
                    HeaderBlockRecord] = await self.block_store.get_header_block_record(
                        curr)
                fetched_sub_block: Optional[
                    SubBlockRecord] = await self.block_store.get_sub_block_record(
                        curr)
                assert fetched_block is not None
                assert fetched_sub_block is not None
                blocks_to_add.append((fetched_block, fetched_sub_block))
                if fetched_block.height == 0:
                    # Doing a full reorg, starting at height 0
                    break
                curr = fetched_sub_block.prev_hash

            for fetched_block, fetched_sub_block in reversed(blocks_to_add):
                self.__height_to_hash[
                    fetched_sub_block.height] = fetched_sub_block.header_hash
                if fetched_sub_block.is_block:
                    await self.coins_of_interest_received(
                        fetched_block.removals,
                        fetched_block.additions,
                        fetched_block.height,
                    )
                if fetched_sub_block.sub_epoch_summary_included is not None:
                    self.__sub_epoch_summaries[
                        fetched_sub_block.
                        height] = fetched_sub_block.sub_epoch_summary_included

            # Changes the peak to be the new peak
            await self.block_store.set_peak(sub_block.header_hash)
            self.peak_height = sub_block.height
            return uint32(min(fork_h, 0))

        # This is not a heavier block than the heaviest we have seen, so we don't change the coin set
        return None

    def get_next_difficulty(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_sub_block(header_hash)
        curr = self.sub_block_record(header_hash)
        if curr.height <= 2:
            return self.constants.DIFFICULTY_STARTING
        return get_next_difficulty(
            self.constants,
            self,
            header_hash,
            curr.height,
            uint64(curr.weight - self.__sub_blocks[curr.prev_hash].weight),
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    def get_next_slot_iters(self, header_hash: bytes32,
                            new_slot: bool) -> uint64:
        assert self.contains_sub_block(header_hash)
        curr = self.sub_block_record(header_hash)
        if curr.height <= 2:
            return self.constants.SUB_SLOT_ITERS_STARTING
        return get_next_sub_slot_iters(
            self.constants,
            self,
            header_hash,
            curr.height,
            curr.sub_slot_iters,
            curr.deficit,
            new_slot,
            curr.sp_total_iters(self.constants),
        )

    async def pre_validate_blocks_multiprocessing(
        self,
        blocks: List[HeaderBlock],
    ) -> Optional[List[PreValidationResult]]:
        return await pre_validate_blocks_multiprocessing(
            self.constants, self.constants_json, self, blocks, self.pool)

    def contains_sub_block(self, header_hash: bytes32) -> bool:
        """
        True if we have already added this block to the chain. This may return false for orphan sub-blocks
        that we have added but no longer keep in memory.
        """
        return header_hash in self.__sub_blocks

    def sub_block_record(self, header_hash: bytes32) -> SubBlockRecord:
        return self.__sub_blocks[header_hash]

    def height_to_sub_block_record(self,
                                   height: uint32,
                                   check_db=False) -> SubBlockRecord:
        header_hash = self.height_to_hash(height)
        return self.sub_block_record(header_hash)

    def get_ses_heights(self) -> List[uint32]:
        return sorted(self.__sub_epoch_summaries.keys())

    def get_ses(self, height: uint32) -> SubEpochSummary:
        return self.__sub_epoch_summaries[height]

    def height_to_hash(self, height: uint32) -> Optional[bytes32]:
        return self.__height_to_hash[height]

    def contains_height(self, height: uint32) -> bool:
        return height in self.__height_to_hash

    def get_peak_height(self) -> Optional[uint32]:
        return self.peak_height

    async def warmup(self, fork_point: uint32):
        """
        Loads sub blocks into the cache. The sub-blocks loaded include all blocks from
        fork point - SUB_BLOCKS_CACHE_SIZE up to and including the fork_point.

        Args:
            fork_point: the last sub-block height to load in the cache

        """

        if self.peak_height is None:
            return
        sub_blocks = await self.block_store.get_sub_block_records_in_range(
            fork_point - self.constants.SUB_BLOCKS_CACHE_SIZE,
            self.peak_height)
        for sub_block in sub_blocks.values():
            self.add_sub_block(sub_block)

    def clean_sub_block_record(self, height: int):
        """
        Clears all sub block records in the cache which have sub_block < height.
        Args:
            height: Minimum height that we need to keep in the cache
        """

        if height < 0:
            return
        blocks_to_remove = self.__heights_in_cache.get(uint32(height), None)
        while blocks_to_remove is not None and height >= 0:
            for header_hash in blocks_to_remove:
                del self.__sub_blocks[header_hash]
            del self.__heights_in_cache[uint32(
                height)]  # remove height from heights in cache

            height -= 1
            blocks_to_remove = self.__heights_in_cache.get(
                uint32(height), None)

    def clean_sub_block_records(self):
        """
        Cleans the cache so that we only maintain relevant sub-blocks. This removes sub-block records that have sub
        height < peak - SUB_BLOCKS_CACHE_SIZE. These blocks are necessary for calculating future difficulty adjustments.
        """

        if len(self.__sub_blocks) < self.constants.SUB_BLOCKS_CACHE_SIZE:
            return

        peak = self.get_peak()
        assert peak is not None
        if peak.height - self.constants.SUB_BLOCKS_CACHE_SIZE < 0:
            return
        self.clean_sub_block_record(peak.height -
                                    self.constants.SUB_BLOCKS_CACHE_SIZE)

    async def get_sub_block_records_in_range(
            self, start: int, stop: int) -> Dict[bytes32, SubBlockRecord]:
        return await self.block_store.get_sub_block_records_in_range(
            start, stop)

    async def get_header_blocks_in_range(
            self, start: int, stop: int) -> Dict[bytes32, HeaderBlock]:
        return await self.block_store.get_header_blocks_in_range(start, stop)

    async def get_sub_block_from_db(
            self, header_hash: bytes32) -> Optional[SubBlockRecord]:
        if header_hash in self.__sub_blocks:
            return self.__sub_blocks[header_hash]
        return await self.block_store.get_sub_block_record(header_hash)

    def remove_sub_block(self, header_hash: bytes32):
        sbr = self.sub_block_record(header_hash)
        del self.__sub_blocks[header_hash]
        self.__heights_in_cache[sbr.height].remove(header_hash)

    def add_sub_block(self, sub_block: SubBlockRecord):
        self.__sub_blocks[sub_block.header_hash] = sub_block
        if sub_block.height not in self.__heights_in_cache.keys():
            self.__heights_in_cache[sub_block.height] = set()
        self.__heights_in_cache[sub_block.height].add(sub_block.header_hash)

    async def get_header_block(self,
                               header_hash: bytes32) -> Optional[HeaderBlock]:
        return await self.block_store.get_header_block(header_hash)
示例#32
0
end = unit
while end <= total_no_of_results:
    ranges.append([start, end])
    start = end
    end = end + unit


def genResults(the_range):
    print(f"start:{the_range[0]} - end:{the_range[1]}")
    rs_store = []
    for i in range(the_range[0], the_range[1]):
        rs_loto = Game649().playMaxGameUnits()
        rs_store.append(rs_loto)
    for rs in rs_store:
        for r in rs.results:
            wd = WinningsDetector(rc, r)
            wd.getWinning()
            if wd.match_count > 5:
                print(wd.match_count)


if __name__ == "__main__":
    start = tm.default_timer()
    prl = ProcessPoolExecutor(4)
    future_results = prl.map(genResults, ranges)
    prl.shutdown()
    rs_store = []

    end = tm.default_timer() - start
    print(end)