示例#1
0
def resize(path_all, path_resize, mode):
    image_names_dir = os.listdir(path_all)
    if mode == 'Test_Frame':
        image_names_dir = os.listdir(path_all + 'No_Fire')
    image_names_dir.sort()
    new_width = new_size.get('width')
    new_height = new_size.get('height')
    dimension = (new_width, new_height)

    count = 0
    for image in image_names_dir:
        if mode == 'Fire':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/resized_' + image, resized_img)
        elif mode == 'Lake_Mary':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/lake_resized_' + image, resized_img)
        elif mode == 'Test_Frame':
            img = cv2.imread(path_all + 'No_Fire/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + 'No_Fire/resized_' + image, resized_img)

        print('Image after Resizing ' + str(count) + ' : resized_' + image)
        count += 1
示例#2
0
def resize(path_all, path_resize, mode):
    """
    Resizing the imported images to the project and save them on drive based on the dimension parameter.
    :param path_all: The directory of loaded images to the project
    :param path_resize: The directory to save the resized files
    :param mode: Fire, No_Fire(lake mary), or the test data
    :return: None
    """
    image_names_dir = os.listdir(path_all)
    if mode == 'Test_Frame':
        # image_names_dir = os.listdir(path_all + 'Fire')  # This is for the FIRE DIR (Test)
        image_names_dir = os.listdir(
            path_all + 'No_Fire')  # This is for the No_FIRE DIR (Test)
    image_names_dir.sort()
    new_width = new_size.get('width')
    new_height = new_size.get('height')
    dimension = (new_width, new_height)

    count = 0
    for image in image_names_dir:
        # print(resized_img.shape)
        # cv2.imshow('output', resized_img)
        if mode == 'Fire':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/resized_' + image, resized_img)
        elif mode == 'Lake_Mary':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/lake_resized_' + image, resized_img)
        elif mode == 'Test_Frame':
            # img = cv2.imread(path_all + 'Fire/' + image)
            img = cv2.imread(path_all + 'No_Fire/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            # cv2.imwrite(path_resize + 'Fire/resized_' + image, resized_img)  # Resize for Fire (Test Data)
            cv2.imwrite(path_resize + 'No_Fire/resized_' + image,
                        resized_img)  # Resize for NoFire (Test Data)

        print('Image Resized ' + str(count) + ' : resized_' + image)
        count += 1
示例#3
0
def resize(path_all, path_resize, mode):  #Function to resize
    image_names_dir = os.listdir(path_all)
    if mode == 'Test_Frame':
        # image_names_dir = os.listdir(path_all + 'Fire')  # This is for the FIRE DIR (Test)
        image_names_dir = os.listdir(
            path_all + 'No_Fire')  # This is for the No_FIRE DIR (Test)
    image_names_dir.sort()
    new_width = new_size.get('width')
    new_height = new_size.get('height')
    dimension = (new_width, new_height)

    count = 0
    for image in image_names_dir:
        # print(resized_img.shape)
        # cv2.imshow('output', resized_img)
        if mode == 'Fire':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/resized_' + image, resized_img)
        elif mode == 'Lake_Mary':
            img = cv2.imread(path_all + '/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            cv2.imwrite(path_resize + '/lake_resized_' + image, resized_img)
        elif mode == 'Test_Frame':
            # img = cv2.imread(path_all + 'Fire/' + image)
            img = cv2.imread(path_all + 'No_Fire/' + image)
            resized_img = cv2.resize(img,
                                     dimension,
                                     interpolation=cv2.INTER_AREA)
            # cv2.imwrite(path_resize + 'Fire/resized_' + image, resized_img)  # Resize for Fire (Test Data)
            cv2.imwrite(path_resize + 'No_Fire/resized_' + image,
                        resized_img)  # Resize for NoFire (Test Data)

        print('Image Resized ' + str(count) + ' : resized_' + image)
        count += 1
 OS: Ubuntu 18.04
################################
"""
#########################################################
# import libraries

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model

from plotdata import plot_confusion_matrix
from config import Config_classification
from config import new_size

batch_size = Config_classification.get('batch_size')
image_size = (new_size.get('width'), new_size.get('height'))
epochs = Config_classification.get('Epochs')

#########################################################
# Function definition


def classify():
    """
    This function load the trained model from the previous task and evaluates the performance of that over the test
    data set.
    :return: None, Plot the Confusion matrix for the test data on the binary classification
    """
    test_ds = tf.keras.preprocessing.image_dataset_from_directory(
        "frames/Test",
        seed=1337,