示例#1
0
    def test_config_path_helper(self):

        # if it's none, return the default
        del os.environ['herd_config_path']
        self.assertEqual(config_path(), os.path.expanduser("~/.herdconfig"))

        # if it's something return that
        os.environ['herd_config_path'] = "/mock/path/.herdconfig"
        self.assertEqual(config_path(), "/mock/path/.herdconfig")
示例#2
0
def setconfig(section, key, value):
    """ set the key to the value in .herdconfig """
    conf = ConfigParser()
    with open(config_path(), 'r') as configfile:
        conf.readfp(configfile)
        conf.add_section(section)
        conf.set(section, key, value)
    with open(config_path(), 'w') as configfile:
        conf.write(configfile)
示例#3
0
def get_past_diagnosis(patient_id):
    config = config_path()

    patients_files = json.loads(open(config.patient_dict).read())
    history = patients_files[patient_id]

    return (history)
示例#4
0
def test_init():
    path = cfg.config_path()
    run = cfg.config_run()
    param = cfg.config_param()
    test_param = cfg.param_test()
    csv_path = os.path.join(path.data_dir_top, test_param.csv_outs)
    if os.path.exists(csv_path):
        print("%s is exist!" % (csv_path))
    else:
        os.makedirs(csv_path)
        print("creat the dir %s!" % (csv_path))

    event_path = os.path.join(path.data_dir_top, path.event_top_dir,
                              test_param.event_dir)
    if os.path.exists(event_path):
        print("%s is exist!" % (event_path))
    else:
        os.makedirs(event_path)
        print("creat the dir %s!" % (event_path))

    FLAGS.subset = str(run.mode)
    ## new param mode
    FLAGS.test_dir = str(event_path)
    FLAGS.checkpoint_dir = str(
        os.path.join(path.data_dir_top, test_param.model_dir))
    FLAGS.data_dir = str(
        os.path.join(path.data_dir_top, test_param.tfrecord_dir))
    FLAGS.csv_dir = csv_path
    FLAGS.input_queue_memory_factor = test_param.input_queue_memory_factor
    FLAGS.num_examples = test_param.num_example
    FLAGS.batch_size = test_param.batch_size
    FLAGS.run_once = test_param.run_once
    FLAGS.test_gpu_id = test_param.gpu_id

    return 0
示例#5
0
文件: demo.py 项目: superZJFan/wsics
def main():
    path = cfg.config_path()
    if main_init() != 0:
        return 1
    tmpl_param = get_tmpl_param()
    #tmpl land_mask computer

    raw_dir = os.path.join(path.top_dir, path.raw_dir)
    list_dir = os.listdir(raw_dir)
    for name in list_dir:
        name_path = os.path.join(path.top_dir, path.raw_dir, name)

        img_dat = mpimg.imread(name_path)
        hsd_dat = hsd_t.rgb2hsd(img_dat)
        he_label = pixc.patch_pixel_cluster(img_dat, 3)

        #ing_info include img_param and img_lm_label
        img_info = get_param(hsd_dat, he_label)
        #change mean and angle
        img_mean = img_info[0]
        img_angle = img_info[1]
        an_chg_hsd_h, an_chg_hsd_e = mean_angel_perprocess(
            hsd_dat, he_label, img_mean, img_angle)

        #get land mask ,and get img landmask label
        lm = exfeat.get_all_landmask(an_chg_hsd_h, an_chg_hsd_e, he_label)
        lm_label = lm_lab.get_all_lm_label()

        hsd_out = transform.transform_to_tmpl(hsd_dat, he_label, img_info,
                                              tmpl_param)
        save_hsd_img(hsd_out, name)
    return 0
示例#6
0
文件: demo.py 项目: superZJFan/wsics
def save_hsd_img(hsd, name):
    path = cfg.config_path()
    outs_path = os.path.join(path.top_dir, path.hsd_dir, name)
    img_dat = hsd_t.hsd2rgb(hsd)
    mpimg.imsave(outs_path, img_dat)

    return 0
示例#7
0
文件: demo.py 项目: superZJFan/wsics
def get_tmpl_param():
    path = cfg.config_path()
    tmpl_path = os.path.join(path.top_dir, path.tmpl_name)
    img_dat = mpimg.imread(tmpl_path)
    hsd_dat = hsd_t.rgb2hsd(img_dat)
    he_label = pixc.patch_pixel_cluster(hsd_dat)

    return get_param(hsd_dat, he_label)
示例#8
0
def get_current_goals():
    config = config_path()

    goals_file = json.loads(open(config.goals_dict).read())
    goals = goals_file[config.patient_id]

    if len(goals) == 0:
        return (('example: Hba1c level < 7;'))
    else:
        return (('\n'.join(goals) + ';'))
示例#9
0
def eval_init():
    path = cfg.config_path()
    #run = cfg.config_run()
    param = cfg.config_param()
    eavl_param = cfg.param_eval()

    FLAGS.num_gpus = param.gpu_num

    FLAGS.eval_dir = str(
        os.path.join(path.data_dir_top, path.event_top_dir,
                     eavl_param.event_dir))
    FLAGS.data_dir = str(
        os.path.join(path.data_dir_top, eavl_param.tfrecord_dir))

    FLAGS.checkpoint_dir = str(
        os.path.join(path.data_dir_top, eavl_param.model_dir))
    FLAGS.input_queue_memory_factor = eavl_param.input_queue_memory_factor
    FLAGS.num_examples = eavl_param.num_example
    FLAGS.batch_size = eavl_param.batch_size
    FLAGS.subset = eavl_param.mode_name
    FLAGS.run_once = eavl_param.run_once
    return 0
示例#10
0
def train_init():
    path = cfg.config_path()
    run = cfg.config_run()
    param = cfg.config_param()
    save_models_path = os.path.join(path.data_dir_top, path.save_models_dir)
    if os.path.exists(save_models_path):
        print("save models dir exist!")
    else:
        print("creat save models dir!")
        os.makedirs(save_models_path)

    FLAGS.train_dir = str(save_models_path)
    FLAGS.data_dir = str(os.path.join(path.data_dir_top, path.data_dir))
    FLAGS.fine_tune = param.fine_tune
    FLAGS.initial_learning_rate = param.init_learning_rate
    FLAGS.input_queue_memory_factor = param.input_queue_memory_factor
    FLAGS.checkpoint_dir = str(os.path.join(path.data_dir_top,
                                            path.models_dir))
    FLAGS.method_name = str(run.method_name)
    #FLAGS.pretrained_model_checkpoint_path = str(os.path.join(path.data_dir_top,path.models_dir,path.model_checkpoint))
    FLAGS.batch_size = param.train_batch_size
    FLAGS.num_gpus = param.gpu_num
    FLAGS.max_steps = param.max_step
    FLAGS.subset = str(run.mode)
示例#11
0
#!/usr/bin/env python3

import json
import os
import numpy as np
import pandas as pd
import networkx as nx
from config import config_path

config = config_path()

def graph_sugg():
    transcripts_dir = 'Transcripts'

    with open(config.transcript_D, 'r') as f:
        current_diagnoses = f.read()


    def neighbours_suggestions(graph, current_diagnoses, past_diagnoses):
        # Neighbours of the current diagnosis
        try:
            first = sum(
                [list(nx.all_neighbors(graph, v)) for v in current_diagnoses],
                [])
        except nx.exception.NetworkXError:
            first = []
        # give weight 1
        first = list(zip(first, np.repeat(1, len(first))))
        # Neighbours of the past diagnoses
        try:
            second = sum(