示例#1
0
def rename_events(raw, subject, session):
    # Check if the user requested to rename events that don't exist.
    # We don't want this to go unnoticed.
    event_names_set = set(raw.annotations.description)
    rename_events_set = set(config.rename_events.keys())
    events_not_in_raw = rename_events_set - event_names_set
    if events_not_in_raw:
        msg = (f'You requested to rename the following events, but '
               f'they are not present in the BIDS input data:\n'
               f'{", ".join(sorted(list(events_not_in_raw)))}')
        if config.on_rename_missing_events == 'warn':
            logger.warning(msg)
        else:
            raise ValueError(msg)

    # Do the actual event renaming.
    msg = 'Renaming events …'
    logger.info(
        gen_log_message(message=msg, step=1, subject=subject, session=session))
    descriptions = list(raw.annotations.description)
    for old_event_name, new_event_name in config.rename_events.items():
        msg = f'… {old_event_name} -> {new_event_name}'
        logger.info(
            gen_log_message(message=msg,
                            step=1,
                            subject=subject,
                            session=session))
        for idx, description in enumerate(descriptions.copy()):
            if description == old_event_name:
                descriptions[idx] = new_event_name

    descriptions = np.asarray(descriptions, dtype=str)
    raw.annotations.description = descriptions
def main():
    """Run group average in source space"""
    msg = 'Running Step 13: Grand-average source estimates'
    logger.info(gen_log_message(step=13, message=msg))

    if not config.run_source_estimation:
        msg = '    … skipping: run_source_estimation is set to False.'
        logger.info(gen_log_message(step=13, message=msg))
        return

    mne.datasets.fetch_fsaverage(subjects_dir=config.get_fs_subjects_dir())

    parallel, run_func, _ = parallel_func(morph_stc, n_jobs=config.N_JOBS)
    all_morphed_stcs = parallel(run_func(subject, session)
                                for subject, session in
                                itertools.product(config.get_subjects(),
                                                  config.get_sessions()))
    all_morphed_stcs = [morphed_stcs for morphed_stcs, subject in
                        zip(all_morphed_stcs, config.get_subjects())]
    mean_morphed_stcs = map(sum, zip(*all_morphed_stcs))

    subject = 'average'
    # XXX to fix
    if config.get_sessions():
        session = config.get_sessions()[0]
    else:
        session = None

    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         processing=config.proc,
                         recording=config.rec,
                         space=config.space,
                         datatype=config.get_datatype(),
                         root=config.deriv_root,
                         check=False)

    if isinstance(config.conditions, dict):
        conditions = list(config.conditions.keys())
    else:
        conditions = config.conditions

    for condition, this_stc in zip(conditions, mean_morphed_stcs):
        this_stc /= len(all_morphed_stcs)

        method = config.inverse_method
        cond_str = config.sanitize_cond_name(condition)
        inverse_str = method
        hemi_str = 'hemi'  # MNE will auto-append '-lh' and '-rh'.
        morph_str = 'morph2fsaverage'

        fname_stc_avg = bids_path.copy().update(
            suffix=f'{cond_str}+{inverse_str}+{morph_str}+{hemi_str}')
        this_stc.save(fname_stc_avg)

    msg = 'Completed Step 13: Grand-average source estimates'
    logger.info(gen_log_message(step=13, message=msg))
def run_evoked(subject, session=None):
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         recording=config.rec,
                         space=config.space,
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root)

    processing = None
    if config.use_ica or config.use_ssp:
        processing = 'clean'

    fname_in = bids_path.copy().update(processing=processing, suffix='epo',
                                       check=False)
    fname_out = bids_path.copy().update(suffix='ave', check=False)

    msg = f'Input: {fname_in}, Output: {fname_out}'
    logger.info(gen_log_message(message=msg, step=6, subject=subject,
                                session=session))

    epochs = mne.read_epochs(fname_in, preload=True)

    msg = 'Creating evoked data based on experimental conditions …'
    logger.info(gen_log_message(message=msg, step=6, subject=subject,
                                session=session))
    all_evoked = dict()

    if isinstance(config.conditions, dict):
        for new_cond_name, orig_cond_name in config.conditions.items():
            evoked = epochs[orig_cond_name].average()
            evoked.comment = evoked.comment.replace(orig_cond_name,
                                                    new_cond_name)
            all_evoked[new_cond_name] = evoked
    else:
        for condition in config.conditions:
            evoked = epochs[condition].average()
            all_evoked[condition] = evoked

    if config.contrasts:
        msg = 'Contrasting evoked responses …'
        logger.info(gen_log_message(message=msg, step=6, subject=subject,
                                    session=session))

        for contrast in config.contrasts:
            cond_1, cond_2 = contrast
            evoked_diff = mne.combine_evoked([all_evoked[cond_1],
                                              all_evoked[cond_2]],
                                             weights=[1, -1])
            all_evoked[contrast] = evoked_diff

    evokeds = list(all_evoked.values())
    mne.write_evokeds(fname_out, evokeds)

    if config.interactive:
        for evoked in evokeds:
            evoked.plot()
示例#4
0
def filter_for_ica(raw, subject, session):
    """Apply a high-pass filter if needed."""
    if config.ica_l_freq <= config.l_freq or config.ica_l_freq is None:
        # Nothing to do here!
        msg = 'Not applying high-pass filter '
        if config.ica_l_freq <= config.l_freq:
            msg += (f'(data is already filtered, '
                    f'cutoff: {raw.info["highpass"]} Hz).')
        else:
            msg = '(no filtering requested).'
        logger.info(
            gen_log_message(message=msg,
                            step=4,
                            subject=subject,
                            session=session))
    else:
        msg = f'Applying high-pass filter with {config.ica_l_freq} Hz cutoff …'
        logger.info(
            gen_log_message(message=msg,
                            step=4,
                            subject=subject,
                            session=session))
        raw.filter(l_freq=config.ica_l_freq, h_freq=None)

    return raw
def main():
    """Run sliding estimator."""
    msg = 'Running Step 7: Sliding estimator'
    logger.info(gen_log_message(step=7, message=msg))

    if not config.contrasts:
        msg = 'No contrasts specified; not performing decoding.'
        logger.info(gen_log_message(step=7, message=msg))
        return

    if not config.decode:
        msg = 'No decoding requested by user.'
        logger.info(gen_log_message(step=7, message=msg))
        return

    # Here we go parallel inside the :class:`mne.decoding.SlidingEstimator`
    # so we don't dispatch manually to multiple jobs.
    for subject in config.get_subjects():
        for session in config.get_sessions():
            for contrast in config.contrasts:
                cond_1, cond_2 = contrast
                run_time_decoding(subject=subject, condition1=cond_1,
                                  condition2=cond_2, session=session)

    msg = 'Completed Step 7: Sliding estimator'
    logger.info(gen_log_message(step=7, message=msg))
def rename_events(raw, subject, session):
    # Check if the user requested to rename events that don't exist.
    # We don't want this to go unnoticed.
    event_names_set = set(raw.annotations.description)
    rename_events_set = set(config.rename_events.keys())
    events_not_in_raw = rename_events_set - event_names_set
    if events_not_in_raw:
        msg = (f'You requested to rename the following events, but '
               f'they are not present in the BIDS input data:\n'
               f'{", ".join(sorted(list(events_not_in_raw)))}')
        raise ValueError(msg)

    # Do the actual event renaming.
    msg = 'Renaming events …'
    logger.info(
        gen_log_message(message=msg, step=1, subject=subject, session=session))
    description = raw.annotations.description
    for old_event_name, new_event_name in config.rename_events.items():
        msg = f'… {old_event_name} -> {new_event_name}'
        logger.info(
            gen_log_message(message=msg,
                            step=1,
                            subject=subject,
                            session=session))
        description[description == old_event_name] = new_event_name
示例#7
0
def run_ssp(subject, session=None):
    # compute SSP on first run of raw
    run = config.get_runs()[0]
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=run,
                         recording=config.rec,
                         space=config.space,
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root)

    # Prepare a name to save the data
    raw_fname_in = bids_path.copy().update(processing='filt',
                                           suffix='raw',
                                           check=False)

    # when saving proj, use run=None
    proj_fname_out = bids_path.copy().update(run=None,
                                             suffix='proj',
                                             check=False)

    msg = f'Input: {raw_fname_in}, Output: {proj_fname_out}'
    logger.info(
        gen_log_message(message=msg, step=4, subject=subject, session=session))

    if raw_fname_in.copy().update(split='01').fpath.exists():
        raw_fname_in.update(split='01')

    raw = mne.io.read_raw_fif(raw_fname_in)
    # XXX : n_xxx should be options in config
    msg = 'Computing SSPs for ECG'
    logger.debug(
        gen_log_message(message=msg, step=4, subject=subject, session=session))
    ecg_projs, ecg_events = compute_proj_ecg(raw,
                                             n_grad=1,
                                             n_mag=1,
                                             n_eeg=0,
                                             average=True)
    msg = 'Computing SSPs for EOG'
    logger.debug(
        gen_log_message(message=msg, step=4, subject=subject, session=session))
    if config.eog_channels:
        assert all(
            [ch_name in raw.ch_names for ch_name in config.eog_channels])
        ch_name = ','.join(config.eog_channels)
    else:
        ch_name = None

    eog_projs, eog_events = compute_proj_eog(raw,
                                             ch_name=ch_name,
                                             n_grad=1,
                                             n_mag=1,
                                             n_eeg=1,
                                             average=True)

    mne.write_proj(proj_fname_out, eog_projs + ecg_projs)
示例#8
0
def detect_ecg_artifacts(ica, raw, subject, session, report):
    # ECG either needs an ecg channel, or avg of the mags (i.e. MEG data)
    if ('ecg' in raw.get_channel_types() or 'meg' in config.ch_types
            or 'mag' in config.ch_types):
        msg = 'Performing automated ECG artifact detection …'
        logger.info(
            gen_log_message(message=msg,
                            step=4,
                            subject=subject,
                            session=session))

        # Do not reject epochs based on amplitude.
        ecg_epochs = create_ecg_epochs(raw,
                                       reject=None,
                                       baseline=(None, -0.2),
                                       tmin=-0.5,
                                       tmax=0.5)
        ecg_evoked = ecg_epochs.average()
        ecg_inds, scores = ica.find_bads_ecg(
            ecg_epochs, method='ctps', threshold=config.ica_ctps_ecg_threshold)
        ica.exclude = ecg_inds

        msg = (f'Detected {len(ecg_inds)} ECG-related ICs in '
               f'{len(ecg_epochs)} ECG epochs.')
        logger.info(
            gen_log_message(message=msg,
                            step=4,
                            subject=subject,
                            session=session))
        del ecg_epochs

        # Plot scores
        fig = ica.plot_scores(scores, labels='ecg', show=config.interactive)
        report.add_figs_to_section(figs=fig,
                                   captions='Scores - ECG',
                                   section=f'sub-{subject}')

        # Plot source time course
        fig = ica.plot_sources(ecg_evoked, show=config.interactive)
        report.add_figs_to_section(figs=fig,
                                   captions='Source time course - ECG',
                                   section=f'sub-{subject}')

        # Plot original & corrected data
        fig = ica.plot_overlay(ecg_evoked, show=config.interactive)
        report.add_figs_to_section(figs=fig,
                                   captions='Corrections - ECG',
                                   section=f'sub-{subject}')
    else:
        ecg_inds = list()
        msg = ('No ECG or magnetometer channels are present. Cannot '
               'automate artifact detection for ECG')
        logger.info(
            gen_log_message(message=msg,
                            step=4,
                            subject=subject,
                            session=session))

    return ecg_inds
def average_evokeds(session):
    # Container for all conditions:
    all_evokeds = defaultdict(list)

    for subject in config.get_subjects():
        fname_in = BIDSPath(subject=subject,
                            session=session,
                            task=config.get_task(),
                            acquisition=config.acq,
                            run=None,
                            recording=config.rec,
                            space=config.space,
                            suffix='ave',
                            extension='.fif',
                            datatype=config.get_datatype(),
                            root=config.deriv_root,
                            check=False)

        msg = f'Input: {fname_in}'
        logger.info(
            gen_log_message(message=msg,
                            step=9,
                            subject=subject,
                            session=session))

        evokeds = mne.read_evokeds(fname_in)
        for idx, evoked in enumerate(evokeds):
            all_evokeds[idx].append(evoked)  # Insert into the container

    for idx, evokeds in all_evokeds.items():
        all_evokeds[idx] = mne.grand_average(
            evokeds, interpolate_bads=config.interpolate_bads_grand_average
        )  # Combine subjects

    subject = 'average'
    fname_out = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         processing=config.proc,
                         recording=config.rec,
                         space=config.space,
                         suffix='ave',
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root,
                         check=False)

    if not fname_out.fpath.parent.exists():
        os.makedirs(fname_out.fpath.parent)

    msg = f'Saving grand-averaged evoked sensor data: {fname_out}'
    logger.info(
        gen_log_message(message=msg, step=9, subject=subject, session=session))
    mne.write_evokeds(fname_out, list(all_evokeds.values()))
    return list(all_evokeds.values())
示例#10
0
def run_evoked(subject, session=None):
    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.get_task(),
                                       acquisition=config.acq,
                                       run=None,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space)

    if config.use_ica or config.use_ssp:
        extension = '_cleaned-epo'
    else:
        extension = '-epo'

    fname_in = op.join(deriv_path, bids_basename + '%s.fif' % extension)
    fname_out = op.join(deriv_path, bids_basename + '-ave.fif')

    msg = f'Input: {fname_in}, Output: {fname_out}'
    logger.info(
        gen_log_message(message=msg, step=6, subject=subject, session=session))

    epochs = mne.read_epochs(fname_in, preload=True)

    msg = 'Creating evoked data based on experimental conditions …'
    logger.info(
        gen_log_message(message=msg, step=6, subject=subject, session=session))
    evokeds = []
    for condition in config.conditions:
        evoked = epochs[condition].average()
        evokeds.append(evoked)

    if config.contrasts:
        msg = 'Contrasting evoked responses …'
        logger.info(
            gen_log_message(message=msg,
                            step=6,
                            subject=subject,
                            session=session))

        for contrast in config.contrasts:
            cond_1, cond_2 = contrast
            evoked_1 = epochs[cond_1].average()
            evoked_2 = epochs[cond_2].average()
            evoked_diff = mne.combine_evoked([evoked_1, evoked_2],
                                             weights=[1, -1])
            evokeds.append(evoked_diff)

    mne.evoked.write_evokeds(fname_out, evokeds)

    if config.interactive:
        for evoked in evokeds:
            evoked.plot()
示例#11
0
def run_evoked(subject, session=None):
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         recording=config.rec,
                         space=config.space,
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root)

    processing = None
    if config.use_ica or config.use_ssp:
        processing = 'clean'

    fname_in = bids_path.copy().update(processing=processing,
                                       suffix='epo',
                                       check=False)
    fname_out = bids_path.copy().update(suffix='ave', check=False)

    msg = f'Input: {fname_in}, Output: {fname_out}'
    logger.info(
        gen_log_message(message=msg, step=6, subject=subject, session=session))

    epochs = mne.read_epochs(fname_in, preload=True)

    msg = 'Creating evoked data based on experimental conditions …'
    logger.info(
        gen_log_message(message=msg, step=6, subject=subject, session=session))
    evokeds = []
    for condition in config.conditions:
        evoked = epochs[condition].average()
        evokeds.append(evoked)

    if config.contrasts:
        msg = 'Contrasting evoked responses …'
        logger.info(
            gen_log_message(message=msg,
                            step=6,
                            subject=subject,
                            session=session))

        for contrast in config.contrasts:
            cond_1, cond_2 = contrast
            evoked_1 = epochs[cond_1].average()
            evoked_2 = epochs[cond_2].average()
            evoked_diff = mne.combine_evoked([evoked_1, evoked_2],
                                             weights=[1, -1])
            evokeds.append(evoked_diff)

    mne.write_evokeds(fname_out, evokeds)

    if config.interactive:
        for evoked in evokeds:
            evoked.plot()
def main():
    """Run BEM surface extraction."""
    msg = 'Running Step 10: Create BEM surfaces'
    logger.info(gen_log_message(step=10, message=msg))

    parallel, run_func, _ = parallel_func(make_bem, n_jobs=config.N_JOBS)
    parallel(run_func(subject) for subject in config.get_subjects())

    msg = 'Completed Step 10: Create BEM surfaces'
    logger.info(gen_log_message(step=10, message=msg))
def main():
    """Run evoked."""
    msg = 'Running Step 6: Create evoked data'
    logger.info(gen_log_message(step=6, message=msg))

    parallel, run_func, _ = parallel_func(run_evoked, n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 6: Create evoked data'
    logger.info(gen_log_message(step=6, message=msg))
示例#14
0
def main():
    """Run inv."""
    msg = 'Running Step 12: Compute and apply inverse solution'
    logger.info(gen_log_message(step=12, message=msg))

    parallel, run_func, _ = parallel_func(run_inverse, n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 12: Compute and apply inverse solution'
    logger.info(gen_log_message(step=12, message=msg))
示例#15
0
def main():
    """Run forward."""
    msg = 'Running Step 10: Create forward solution'
    logger.info(gen_log_message(step=10, message=msg))

    parallel, run_func, _ = parallel_func(run_forward, n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 10: Create forward solution'
    logger.info(gen_log_message(step=10, message=msg))
示例#16
0
def main():
    """Run filter."""
    msg = 'Running Step 2: Frequency filtering'
    logger.info(gen_log_message(step=2, message=msg))

    parallel, run_func, _ = parallel_func(run_filter, n_jobs=config.N_JOBS)
    parallel(run_func(subject, run, session) for subject, run, session in
             itertools.product(config.get_subjects(), config.get_runs(),
                               config.get_sessions()))

    msg = 'Completed 2: Frequency filtering'
    logger.info(gen_log_message(step=2, message=msg))
示例#17
0
def main():
    """Run tf."""
    msg = 'Running Step 8: Time-frequency decomposition'
    logger.info(gen_log_message(message=msg, step=8))

    parallel, run_func, _ = parallel_func(run_time_frequency,
                                          n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 8: Time-frequency decomposition'
    logger.info(gen_log_message(message=msg, step=8))
示例#18
0
def main():
    """Run grp ave."""
    msg = 'Running Step 13: Grand-average source estimates'
    logger.info(gen_log_message(step=13, message=msg))

    mne.datasets.fetch_fsaverage(subjects_dir=config.get_fs_subjects_dir())

    parallel, run_func, _ = parallel_func(morph_stc, n_jobs=config.N_JOBS)
    all_morphed_stcs = parallel(run_func(subject, session)
                                for subject, session in
                                itertools.product(config.get_subjects(),
                                                  config.get_sessions()))
    all_morphed_stcs = [morphed_stcs for morphed_stcs, subject in
                        zip(all_morphed_stcs, config.get_subjects())]
    mean_morphed_stcs = map(sum, zip(*all_morphed_stcs))

    subject = 'average'
    # XXX to fix
    if config.get_sessions():
        session = config.get_sessions()[0]
    else:
        session = None

    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    bids_basename = BIDSPath(subject=subject,
                             session=session,
                             task=config.get_task(),
                             acquisition=config.acq,
                             run=None,
                             processing=config.proc,
                             recording=config.rec,
                             space=config.space,
                             prefix=deriv_path,
                             check=False)

    for condition, this_stc in zip(config.conditions, mean_morphed_stcs):
        this_stc /= len(all_morphed_stcs)

        method = config.inverse_method
        cond_str = condition.replace(op.sep, '').replace('_', '')
        inverse_str = method
        hemi_str = 'hemi'  # MNE will auto-append '-lh' and '-rh'.
        morph_str = 'morph2fsaverage'

        fname_stc_avg = bids_basename.copy().update(
            kind=f'{cond_str}+{inverse_str}+{morph_str}+{hemi_str}')
        this_stc.save(fname_stc_avg)

    msg = 'Completed Step 13: Grand-average source estimates'
    logger.info(gen_log_message(step=13, message=msg))
示例#19
0
def main():
    """Run cov."""
    msg = 'Running Step 11: Estimate noise covariance'
    logger.info(gen_log_message(step=11, message=msg))

    parallel, run_func, _ = parallel_func(run_covariance, n_jobs=config.N_JOBS)
    parallel(
        run_func(subject, session) for subject, session in itertools.product(
            config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 11: Estimate noise covariance'
    logger.info(gen_log_message(step=11, message=msg))
示例#20
0
def main():
    """Run maxwell_filter."""
    msg = 'Running Step 1: Data import and Maxwell filtering'
    logger.info(gen_log_message(step=1, message=msg))

    parallel, run_func, _ = parallel_func(run_maxwell_filter,
                                          n_jobs=config.N_JOBS)
    parallel(
        run_func(subject, session) for subject, session in itertools.product(
            config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 1: Data import and Maxwell filtering'
    logger.info(gen_log_message(step=1, message=msg))
def main():
    """Run epochs."""
    msg = 'Running Step 3: Epoching'
    logger.info(gen_log_message(step=3, message=msg))

    # Here we use fewer N_JOBS to prevent potential memory problems
    parallel, run_func, _ = parallel_func(run_epochs,
                                          n_jobs=max(config.N_JOBS // 4, 1))
    parallel(
        run_func(subject, session) for subject, session in itertools.product(
            config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 3: Epoching'
    logger.info(gen_log_message(step=3, message=msg))
示例#22
0
def run_ssp(subject, session=None):
    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    # compute SSP on first run of raw
    run = config.get_runs()[0]

    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.get_task(),
                                       acquisition=config.acq,
                                       run=run,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space)

    # Prepare a name to save the data
    raw_fname_in = op.join(deriv_path, bids_basename + '_filt_raw.fif')

    # when saving proj, use bids_basename=None
    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.get_task(),
                                       acquisition=config.acq,
                                       run=None,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space)

    proj_fname_out = op.join(deriv_path, bids_basename + '_ssp-proj.fif')

    msg = f'Input: {raw_fname_in}, Output: {proj_fname_out}'
    logger.info(
        gen_log_message(message=msg, step=4, subject=subject, session=session))

    raw = mne.io.read_raw_fif(raw_fname_in)
    # XXX : n_xxx should be options in config
    msg = 'Computing SSPs for ECG'
    logger.debug(
        gen_log_message(message=msg, step=4, subject=subject, session=session))
    ecg_projs, ecg_events = \
        compute_proj_ecg(raw, n_grad=1, n_mag=1, n_eeg=0, average=True)
    msg = 'Computing SSPs for EOG'
    logger.debug(
        gen_log_message(message=msg, step=4, subject=subject, session=session))
    eog_projs, eog_events = \
        compute_proj_eog(raw, n_grad=1, n_mag=1, n_eeg=1, average=True)

    mne.write_proj(proj_fname_out, eog_projs + ecg_projs)
示例#23
0
def main():
    """Run ICA."""
    msg = 'Running Step 4: Compute ICA'
    logger.info(gen_log_message(step=4, message=msg))

    if config.use_ica:
        parallel, run_func, _ = parallel_func(run_ica, n_jobs=config.N_JOBS)
        parallel(
            run_func(subject, session)
            for subject, session in itertools.product(config.get_subjects(),
                                                      config.get_sessions()))

    msg = 'Completed Step 4: Compute ICA'
    logger.info(gen_log_message(step=4, message=msg))
示例#24
0
def main():
    """Apply ssp."""
    if not config.use_ssp:
        return

    msg = 'Running Step 5: Apply SSP'
    logger.info(gen_log_message(step=5, message=msg))

    parallel, run_func, _ = parallel_func(apply_ssp, n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 5: Apply SSP'
    logger.info(gen_log_message(step=5, message=msg))
def main():
    """Run BEM surface extraction."""
    msg = 'Running Step 10: Create BEM surfaces'
    logger.info(gen_log_message(step=10, message=msg))

    if not config.run_source_estimation:
        msg = '    … skipping: run_source_estimation is set to False.'
        logger.info(gen_log_message(step=10, message=msg))
        return

    parallel, run_func, _ = parallel_func(make_bem, n_jobs=config.N_JOBS)
    parallel(run_func(subject) for subject in config.get_subjects())

    msg = 'Completed Step 10: Create BEM surfaces'
    logger.info(gen_log_message(step=10, message=msg))
示例#26
0
def main():
    """Initialize the output directories."""
    msg = 'Running: Initializing output directories.'
    logger.info(gen_log_message(step=1, message=msg))

    init_dataset()
    parallel, run_func, _ = parallel_func(init_subject_dirs,
                                          n_jobs=config.N_JOBS)
    parallel(
        run_func(subject=subject, session=session)
        for subject, session in itertools.product(config.get_subjects(),
                                                  config.get_sessions()))

    msg = 'Completed: Initializing output directories.'
    logger.info(gen_log_message(step=1, message=msg))
示例#27
0
def compute_cov_from_empty_room(subject, session):
    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.get_task(),
                                       acquisition=config.acq,
                                       run=None,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space)

    raw_er_fname = op.join(deriv_path,
                           bids_basename + '_emptyroom_filt_raw.fif')
    cov_fname = op.join(deriv_path, bids_basename + '-cov.fif')

    extra_params = dict()
    if not config.use_maxwell_filter and config.allow_maxshield:
        extra_params['allow_maxshield'] = config.allow_maxshield

    msg = (f'Computing regularized covariance based on empty-room recording. '
           f'Input: {raw_er_fname}, Output: {cov_fname}')
    logger.info(
        gen_log_message(message=msg, step=11, subject=subject,
                        session=session))

    raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True, **extra_params)
    cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info')
    cov.save(cov_fname)
示例#28
0
def compute_cov_from_empty_room(subject, session):
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         recording=config.rec,
                         space=config.space,
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root,
                         check=False)

    raw_er_fname = bids_path.copy().update(processing='filt',
                                           task='noise',
                                           suffix='raw')
    cov_fname = bids_path.copy().update(suffix='cov')

    extra_params = dict()
    if not config.use_maxwell_filter and config.allow_maxshield:
        extra_params['allow_maxshield'] = config.allow_maxshield

    msg = (f'Computing regularized covariance based on empty-room recording. '
           f'Input: {raw_er_fname}, Output: {cov_fname}')
    logger.info(
        gen_log_message(message=msg, step=11, subject=subject,
                        session=session))

    raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True, **extra_params)
    cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info')
    cov.save(cov_fname)
示例#29
0
def compute_cov_from_epochs(subject, session, tmin, tmax):
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=config.get_task(),
                         acquisition=config.acq,
                         run=None,
                         processing=config.proc,
                         recording=config.rec,
                         space=config.space,
                         extension='.fif',
                         datatype=config.get_datatype(),
                         root=config.deriv_root,
                         check=False)

    processing = None
    if config.use_ica or config.use_ssp:
        processing = 'clean'

    epo_fname = bids_path.copy().update(processing=processing, suffix='epo')
    cov_fname = bids_path.copy().update(suffix='cov')

    msg = (f"Computing regularized covariance based on epochs' baseline "
           f"periods. Input: {epo_fname}, Output: {cov_fname}")
    logger.info(
        gen_log_message(message=msg, step=11, subject=subject,
                        session=session))

    epochs = mne.read_epochs(epo_fname, preload=True)
    cov = mne.compute_covariance(epochs,
                                 tmin=tmin,
                                 tmax=tmax,
                                 method='shrunk',
                                 rank='info')
    cov.save(cov_fname)
def main():
    """Run forward."""
    msg = 'Running Step 10: Create forward solution'
    logger.info(gen_log_message(step=10, message=msg))

    if not config.run_source_estimation:
        msg = '    … skipping: run_source_estimation is set to False.'
        logger.info(gen_log_message(step=10, message=msg))
        return

    parallel, run_func, _ = parallel_func(run_forward, n_jobs=config.N_JOBS)
    parallel(run_func(subject, session) for subject, session in
             itertools.product(config.get_subjects(), config.get_sessions()))

    msg = 'Completed Step 10: Create forward solution'
    logger.info(gen_log_message(step=10, message=msg))