legend=dict(x=1, xanchor='right', y=0, yanchor='bottom', bordercolor='#444', borderwidth=0) # legend = dict(x = 0, xanchor = 'left', y =0, yanchor = 'bottom', bordercolor = '#444', borderwidth = 0) ) data = [trace_points, trace_depo] + path_traces fig = go.Figure(data=data, layout=layout) fig.show() if __name__ == '__main__': args = test_parser() t1 = time() pretrained = load_model(args.path, embed_dim=128, n_customer=args.n_customer, n_encode_layers=3) print(f'model loading time:{time()-t1}s') if args.txt is not None: datatxt = data_from_txt(args.txt) data = [] for i in range(3): elem = [datatxt[i].squeeze(0) for j in range(args.batch)] data.append(torch.stack(elem, 0)) else: # data = generate_data(n_samples = 2, n_customer = args.n_customer, seed = args.seed) data = []
import torch from torch.utils.data import DataLoader import numpy as np import cv2 import matplotlib.pyplot as plt from PIL import Image from model import PSPNet from dataset import MyDataset from config import test_parser from visualize import unnormalize_show, PIL_show if __name__ == '__main__': arg = test_parser() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = PSPNet(n_classes=arg.n_classes) if arg.path is not None: print('load model ...') model.load_state_dict(torch.load(arg.path, map_location=device)) model = model.to(device) test_dataset = MyDataset(img_dir=arg.img_dir, anno_dir=arg.anno_dir, phase='test') n_test_img = len(test_dataset) test_loader = DataLoader(test_dataset, batch_size=arg.batch, shuffle=True, pin_memory=True, num_workers=arg.num_workers) model.eval()