def plot_examples(low_res_folder, gen): files = os.listdir(low_res_folder) gen.eval() for file in files: image = Image.open("Data/LR/" + file) with torch.no_grad(): upscaled_img = gen( config.test_transform( image=np.asarray(image))["image"].unsqueeze(0).to( config.DEVICE)) save_image(upscaled_img * 0.5 + 0.5, f"Data/saved/{file}") gen.train()
def plot_examples(low_res_folder, gen): files = os.listdir(low_res_folder) gen.eval() # 测试模式 for file in files: print(file) image = Image.open(os.path.join(low_res_folder, file)) with torch.no_grad(): upscaled_img = gen( config.test_transform( image=np.asarray(image))["image"].unsqueeze(0).to( config.DEVICE)) save_image(upscaled_img, f"saved_images/{file}") gen.train() # 训练模式
def save_examples(low_res_dir, gen): files = os.listdir(low_res_dir) gen.eval() for file in files: image = Image.open(os.path.join(low_res_dir, file)) with torch.no_grad(): upscaled_img = gen( config.test_transform( image=np.asarray(image))["image"].unsqueeze(0).to( config.DEVICE)) save_image(upscaled_img * 0.5 + 0.5, f"saved_images/{file}") gen.train()