示例#1
0
def start():
    config = DataConfig()
    histories = sorted(glob.glob(config.history_location + "*.pickle"))
    data = {}
    for hist in histories:
        file = open(hist, 'rb')
        h = pickle.loads(pickle.load(file))
        for k, v in h.items():
            if k not in data.keys():
                data[k] = []
            for item in v:
                data[k].append(item)
    for i, kv in enumerate(data.items()):
        plt.subplot(1, len(data), i + 1)
        plt.title(kv[0])
        plt.plot(kv[1])
    plt.show()
def test():
    config = ModelConfig()
    data = get_audio_data(config, '../data/audio/train',
                          '../data/audio/train_wav')
    data_config = DataConfig()
    X1, X2, labels = get_dataset(data_config, config)
            img0 = img_to_array(img0)
            img1 = img_to_array(img1)
            img0 = rgb_to_hsv(img0)
            img1 = rgb_to_hsv(img1)
            img = img1[:, :, 2] - img0[:, :, 2]
            img = rescale_intensity(img,
                                    in_range=(-255, 255),
                                    out_range=(0, 255))
            img = np.array(img, dtype=np.uint8)

            X[i - num_channels, :, :, j] = img
    return X, np.array(df["angle"].iloc[num_channels:])


if __name__ == "__main__":
    config = DataConfig()
    data_path = config.data_path
    row, col = config.img_height, config.img_width
    num_channels = config.num_channels

    # print "Pre-processing phase 1 data..."
    # X_train, y_train = make_hsv_grayscale_diff_data("data/train_round1.txt", 4)
    # np.save("{}/X_train_round1_hsv_gray_diff_ch4".format(data_path), X_train)
    # np.save("{}/y_train_round1_hsv_gray_diff_ch4".format(data_path), y_train)

    # X_val, y_val = make_hsv_grayscale_diff_data("data/val_round1.txt", 4)
    # np.save("{}/X_train_round1_hsv_gray_diff_ch4".format(data_path), X_val)
    # np.save("{}/y_train_round1_hsv_gray_diff_ch4".format(data_path), y_val)

    print "Pre-processing phase 2 data..."
    for i in range(1, 6):
示例#4
0
''' Data preparation '''
# coding: utf-8

# Setup

import pandas as pd
import itertools
import pickle

from config import DataConfig

# Load data

data_config = DataConfig()

train_df = pd.read_csv(data_config.data_source + "/train.all",
                       sep="\t",
                       engine='python',
                       header=None,
                       skiprows=0,
                       names=[
                           "Class", "Text", "Phone_CZ", "Phone_EN", "Phone_HU",
                           "Phone_RU", "Embed"
                       ])
test_df = pd.read_csv(data_config.data_source + "/dev.all",
                      sep="\t",
                      engine='python',
                      header=None,
                      skiprows=0,
                      names=[
                          "Class", "Text", "Phone_CZ", "Phone_EN", "Phone_HU",