def main(): train = Server(GetConfig("Canonical"), COCOSourceConfig("../dataset/coco_train_dataset.h5"), 5555, "Train", shuffle=True, augment=True) val = Server(GetConfig("Canonical"), COCOSourceConfig("../dataset/coco_val_dataset.h5"), 5556, "Val", shuffle=False, augment=False) processes = [train, val] while None in [p.process.exitcode for p in processes]: print("exitcodes", [p.process.exitcode for p in processes]) for p in processes: if p.process.exitcode is None: p.join()
from addins.head_counter_config import HeadCounterConfig from model import get_testing_model from glob import glob toloka_dir = os.path.abspath( '/opt/home/anatolix/YaDisk/Приложения/Яндекс.Толока') results_dir_mask = os.path.join(toloka_dir, "Results/Heads/assignments_*.tsv.csv") img_dir = os.path.join(toloka_dir, "Yandex.Toloka/pochta") task = sys.argv[1] assert task == "predict" or task == "render" config_name = sys.argv[2] model = sys.argv[3] config = GetConfig(config_name) val_size = 19 val_ids = None train_ids = None def prepare(config, model_file): model = get_testing_model(np_branch1=config.paf_layers, np_branch2=config.heat_layers + 1) print("using model:", model_file) model.load_weights(model_file)
def db_release(): requests.request('GET', 'http://127.0.0.1:5000/shutdown') conf = GetConfig() conf.release_db_disk(logger) start_server()
def clear_dir(): conf = GetConfig() conf.clean_tmp_file()
for i in range(matches.shape[0]): okp_threshold = eval_result.params.iouThrs[i] scores['matched_%.2f' % okp_threshold] = sum(matches[i, :] != 0) scores['average'] = np.mean(np.sum(matches != 0, axis=1)) / scores['gt_person_count'] return scores evalImgs = eval_result.evalImgs scores = [convert_match_to_score(image_match) for image_match in evalImgs if image_match is not None] return pd.DataFrame(scores) if __name__ == "__main__": config = GetConfig('Canonical') params, model_params = config_reader(figstr='testing/config') from posenet.mymodel3 import get_testing_model # with tf.device("/cpu:0"): # model_single = get_testing_model(np_branch1=config.paf_layers, np_branch2=config.heat_layers, stages=1) # model = multi_gpu_model(model_single, gpus=2) model = get_testing_model(np_branch1=config.paf_layers, np_branch2=config.heat_layers+1, stages=3) # fixme: background + 1 training_dir = './training/' trained_models = [ 'weights' # 'weights-cpp-lr' # 'weights-python-last', ] optimal_epoch_loss = 'val_weight_stage6_L1_loss'
trans_status = True os.remove(tp) if f_type == 'video': obj_id = self.media_shortcut(tmp) info = {'shortcut': obj_id if obj_id else ''} if f_type == 'audio': info = self.media_info_extract(tmp) res.append({ 'file_path': tmp, 'des': info, "trans_status": trans_status }) return config.build_response('after_upload', res, 200) config = GetConfig() fo = FileOperation() file = Blueprint('file', __name__) globalLock = threading.Lock() @file.route('/upload', methods=['POST']) def file_upload(): if request.method == 'POST': if request.form["name"] and request.form['f_type'] and request.form[ 'unique_id']: tmp_dir = config.get_tmp_by_type( request.form['f_type']) + '\\' + request.form['unique_id'] globalLock.acquire() if not os.path.exists(tmp_dir): os.mkdir(tmp_dir)
def _get_files(self): return GetConfig().get_log()
from keras.utils import plot_model from keras import Model, Sequential from keras.layers import Input, ZeroPadding2D, BatchNormalization, Activation, Conv2D, MaxPooling2D, \ AveragePooling2D, UpSampling2D, Lambda, Dropout from keras.layers.merge import Concatenate, Multiply, Add from keras.regularizers import l2 from keras.initializers import random_normal, constant from keras.applications.vgg19 import preprocess_input import keras.backend as K import tensorflow as tf import re import numpy as np from config import COCOSourceConfig, GetConfig config = GetConfig("Canonical") def relu(x): return Activation('relu')(x) def conv(x, nf, ks, name, weight_decay, stride=1, use_bias=False, use_bn=False, use_relu=True): kernel_reg = l2(weight_decay[0]) if weight_decay else None
if self.mask_cache is not None: return self.mask_cache head_layer = global_config.find_heat_layer('HeadCenter') if global_config.num_parts == 1: #background is ok print("Layers will be kept: ", head_layer, "background") self.mask_cache = np.ones(global_config.parts_shape, dtype=np.float) else: print("Layers will be kept: ", head_layer) self.mask_cache = np.zeros(global_config.parts_shape, dtype=np.float) self.mask_cache[:, :, head_layer] = 1. return self.mask_cache def source(self): return self.hdf5_source Configs["HeadCount"] = HeadCounterConfig Configs["HeadTrim"] = HeadCounterTrimmedConfig if __name__ == "__main__": # test it foo = GetConfig("HeadCount")