########################## # Give the analysis a name configMgr.analysisName = "MyUserAnalysis" configMgr.outputFileName = "results/%s_Output.root"%configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts",0.5) bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,0.,100.) sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig],"UserRegion","cuts",0.5) sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") sigSample.addSystematic(cors) sigSample.addSystematic(ucs) dataSample = Sample("Data",kBlack)
wzKtScale = Systematic("KtScaleWZ",configMgr.weights,ktScaleWHighWeights,ktScaleWLowWeights,"weight","overallNormHistoSys") # JES uncertainty as shapeSys - one systematic per region (combine WR and TR), merge samples jes = Systematic("JES","_NoSys","_JESup","_JESdown","tree","overallNormHistoSys") statWRwz = Systematic("SLWR_wz", "_NoSys","","","tree","shapeStat") statWRtop = Systematic("SLWR_top","_NoSys","","","tree","shapeStat") # name of nominal histogram for systematics configMgr.nomName = "_NoSys" # List of samples and their plotting colours topSample = Sample("Top",kGreen-9) topSample.setNormFactor("mu_Top",1.,0.,5.) topSample.setStatConfig(useStat) topSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) wzSample = Sample("WZ",kAzure+1) wzSample.setNormFactor("mu_WZ",1.,0.,5.) wzSample.setStatConfig(useStat) wzSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) bgSample = Sample("BG",kYellow-3) bgSample.setNormFactor("mu_BG",1.,0.,5.) bgSample.setStatConfig(useStat) bgSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) qcdSample = Sample("QCD",kGray+1) qcdSample.setQCD(True,"histoSys") qcdSample.setStatConfig(useStat) dataSample = Sample("Data",kBlack) dataSample.setData()
#diboson theoSysDiboson = Systematic("theoSysDiboson", configMgr.weights, 1.5,0.5, "user","userOverallSys") #photon systematics in SR for Z gammaToZSyst = Systematic("gammaToZSyst", configMgr.weights, 1.25,0.75, "user","userOverallSys") #------------------------------------------- # List of samples and their plotting colours #------------------------------------------- dibosonSample = Sample("Diboson",kRed+3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(useStat) dibosonSample.addSystematic(theoSysDiboson) topSample = Sample("Top",kGreen-9) topSample.setTreeName("Top_SRAll") topSample.setNormFactor("mu_Top",1.,0.,50000.) topSample.setFileList(topFiles) topSample.setStatConfig(useStat) qcdSample = Sample("MCMultijet",kOrange+2) qcdSample.setTreeName("QCD_SRAll") qcdSample.setNormFactor("mu_MCMultijet",1.,0.,500.) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(useStat) wSample = Sample("W",kAzure+1)
########################## # Give the analysis a name configMgr.analysisName = "MyUpperLimitAnalysis_SS" configMgr.outputFileName = "results/%s_Output.root" % configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg], "UserRegion", "cuts", 0.5) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_SS", 1., 0., 10.) #sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig], "UserRegion", "cuts", 0.5) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts", 0.5) # Define top-level
if data_name == 'data15': efake_sample = Sample("efake15", color("efake")) jfake_sample = Sample("jfake15", color("jfake")) elif data_name == 'data16': efake_sample = Sample("efake16", color("efake")) jfake_sample = Sample("jfake16", color("jfake")) else: # should be 'data' efake_sample = Sample("efake", color("efake")) jfake_sample = Sample("jfake", color("jfake")) # Data data_sample = Sample(data_name, ROOT.kBlack) data_sample.setData() # stat uncertainty wjets_sample.setStatConfig(useStat) zjets_sample.setStatConfig(useStat) wgamma_sample.setStatConfig(useStat) zllgamma_sample.setStatConfig(useStat) znunugamma_sample.setStatConfig(useStat) ttbar_sample.setStatConfig(useStat) ttbarg_sample.setStatConfig(useStat) photonjet_sample.setStatConfig(useStat) multijet_sample.setStatConfig(useStat) diphoton_sample.setStatConfig(useStat) vgammagamma_sample.setStatConfig(useStat) vqqgamma_sample.setStatConfig(useStat) if use_mc_bkgs: bkg_samples = [ wgamma_sample,
########################## # Give the analysis a name configMgr.analysisName = "MyUserAnalysis" configMgr.outputFileName = "results/%s_Output.root" % configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(False) bkgSample.buildHisto([nbkg], "UserRegion", "cuts") # bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") # bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_Sig", 1.0, 0.0, 100.0) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) sigSample.buildHisto([nsig], "UserRegion", "cuts") # sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") # sigSample.addSystematic(cors) # sigSample.addSystematic(ucs) dataSample = Sample("Data", kBlack)
########################## # Give the analysis a name configMgr.analysisName = "SimpleUL_%s" % SR configMgr.outputFileName = "results/%s_Output.root" % configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(False) bkgSample.buildHisto([nbkg], "UserRegion", "cuts") #bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") #bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts") # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample, dataSample]) #ana.setSignalSample(sigSample) # Define measurement
# QCD theoSysQCD = Systematic("theoSysQCD", configMgr.weights, 1.0 + theoSysQCDNumber,1.0-theoSysQCDNumber, "user", "userOverallSys") QCDGausSys = Systematic("QCDGausSys", "", "_ghi", "_glo", "tree", "overallNormHistoSys") QCDTailSys = Systematic("QCDTailSys", "", "_thi", "_tlo", "tree", "overallNormHistoSys") # Diboson theoSysDiboson = Systematic("theoSysDiboson", configMgr.weights, 1.5, 0.5, "user", "userOverallSys") #------------------------------------------- # List of samples and their plotting colours #------------------------------------------- # Diboson dibosonSample = Sample("Diboson", kRed+3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(useStat) # Top topSample = Sample("ttbar", kGreen-9) topSample.setTreeName("Top_SRAll") topSample.setNormFactor("mu_Top", 1., 0., 500.) topSample.setFileList(topFiles) topSample.setStatConfig(useStat) if useTheoSys: topSample.addSystematic(theoSysTop) if useSyst : topSample.addSystematic(pileup) topSample.addSystematic(jes) topSample.addSystematic(jer)
ktScaleTopLowWeights, "weight", "normHistoSys") wzKtScale = Systematic("KtScaleWZ", configMgr.weights, ktScaleWHighWeights, ktScaleWLowWeights, "weight", "normHistoSys") # JES uncertainty as shapeSys - one systematic per region (combine WR and TR), merge samples jes = Systematic("JES", "_NoSys", "_JESup", "_JESdown", "tree", "normHistoSys") mcstat = Systematic("mcstat", "_NoSys", "_NoSys", "_NoSys", "tree", "shapeStat") # name of nominal histogram for systematics configMgr.nomName = "_NoSys" # List of samples and their plotting colours topSample = Sample("Top", kGreen - 9) topSample.setNormFactor("mu_Top", 1., 0., 5.) topSample.setStatConfig(useStat) topSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) wzSample = Sample("WZ", kAzure + 1) wzSample.setNormFactor("mu_WZ", 1., 0., 5.) wzSample.setStatConfig(useStat) wzSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) bgSample = Sample("BG", kYellow - 3) bgSample.setNormFactor("mu_BG", 1., 0., 5.) bgSample.setStatConfig(useStat) bgSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) qcdSample = Sample("QCD", kGray + 1) qcdSample.setQCD(True, "histoSys") qcdSample.setStatConfig(useStat) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([86., 66., 62., 35., 11., 7., 2., 0.], "SLTR", "nJet", 2)
phoScaleElst = Systematic("phoScale",configMgr.weights, 1.036, 1-.036, "user","userOverallSys") phoScaleEldiboson = Systematic("phoScale",configMgr.weights, 1.029, 1-.029, "user","userOverallSys") phoScaleElZgamma = Systematic("phoScale",configMgr.weights, 1.025, 1-.025, "user","userOverallSys") # phoScaleMuWgamma = Systematic("phoScale",configMgr.weights, 1.018, 1-.018, "user","userOverallSys") # phoScaleMuttgamma = Systematic("phoScale",configMgr.weights, 1.015,1-.015, "user","userOverallSys") # phoScaleMuttbarDilep = Systematic("phoScale",configMgr.weights, 1.028, 1-.028, "user","userOverallSys") # phoScaleMust = Systematic("phoScale",configMgr.weights, 1.023, 1-.023, "user","userOverallSys") # phoScaleMudiboson = Systematic("phoScale",configMgr.weights, 1.040, 1-.040, "user","userOverallSys") # phoScaleMuZgamma = Systematic("phoScale",configMgr.weights, 1.025, 1-.025, "user","userOverallSys") ## List of samples and their plotting colours. Associate dedicated systematics if applicable. ttbargamma = Sample("ttbargamma",46) # brick ttbargamma.setNormByTheory() ttbargamma.setStatConfig(True) ttbargamma.addSystematic(ttbargammaNorm) Wgamma = Sample("Wgamma",7) # cyan Wgamma.setNormFactor("mu_Wgamma",1.,0.,5.) Wgamma.setNormRegions([("WCRhHTEl", "cuts")]) Wgamma.setStatConfig(True) #Wgamma.addSystematic(WgammaNorm) Zgamma = Sample("Zgamma",kViolet) # cyan Zgamma.setNormByTheory() Zgamma.setStatConfig(True) Zgamma.addSystematic(ZgammaNorm) Zjets = Sample("Zjets",kBlue) # cyan Zjets.setNormByTheory()
photon = Systematic("photon", configMgr.weights, 1.05, 0.95, "user", "userOverallSys") electron = Systematic("electron", configMgr.weights, 1.05, 0.95, "user", "userOverallSys") muon = Systematic("muon", configMgr.weights, 1.05, 0.95, "user", "userOverallSys") metMu = Systematic("metMu", configMgr.weights, 1.1, 0.9, "user", "userOverallSys") metEl = Systematic("metEl", configMgr.weights, 1.1, 0.9, "user", "userOverallSys") ## List of samples and their plotting colours. Associate dedicated systematics if applicable. ttbargamma = Sample("ttbargamma", 46) # brick ttbargamma.setNormByTheory() ttbargamma.setStatConfig(True) ttbargamma.addSystematic(ttbargammaNorm) Wgamma = Sample("Wgamma", 7) # cyan Wgamma.setNormByTheory() Wgamma.setStatConfig(True) Wgamma.addSystematic(WgammaNorm) Zgamma = Sample("Zgamma", 7) # cyan Zgamma.setNormByTheory() Zgamma.setStatConfig(True) Zgamma.addSystematic(ZgammaNorm) Zleplep = Sample("Zleplep", 7) # cyan Zleplep.setNormByTheory() Zleplep.setStatConfig(True)
## Setting up Samples and normalization factors ################################################################################################ userPrint("Setting up samples, norm factors and systematics") # Specify the top level XML and the paramater of interest tlx = configMgr.addFitConfig("TopLvlXML") meas = tlx.addMeasurement(name="NormalMeasurement", lumi=1.0, lumiErr=0.028) # fractional luminosity error meas.addPOI("mu_SIG") ## EXCL:mu_SIG, upper limit table # Determine if we should use stat useStat = False # This is added as systematics below # Add systematics here # Stat zjetsSample.setStatConfig(useStat) fakeSample.setStatConfig(useStat) higgsSample.setStatConfig(useStat) wwSample.setStatConfig(useStat) wzSample.setStatConfig(useStat) zzSample.setStatConfig(useStat) tribosonSample.setStatConfig(useStat) ttbarVSample.setStatConfig(useStat) if not useStat: zjetsSample.addSystematic(sysObj.AR_mcstat_Zjets) fakeSample.addSystematic(sysObj.AR_mcstat_fake) higgsSample.addSystematic(sysObj.AR_mcstat_Higgs) wwSample.addSystematic(sysObj.AR_mcstat_WW) wzSample.addSystematic(sysObj.AR_mcstat_WZ) zzSample.addSystematic(sysObj.AR_mcstat_ZZ)
########################## # Give the analysis a name configMgr.analysisName = "MyUserAnalysis" configMgr.outputFileName = "results/%s_Output.root"%configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts") bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") ### if(runMode=="exclusion"): bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,normFactorMin,normFactorMax) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) sigSample.buildHisto([nsig],"UserRegion","cuts") sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") ### sigSample.addSystematic(cors) ### sigSample.addSystematic(ucs) ###
configMgr.weights = ["1"] configMgr.calculatorType = 2 # calculator type: 0= Frequentist, 1=Hybrid, 2=Aymptotic configMgr.testStatType = 3 # # test stat type: 0=LEP, 1=Tevatron, 2=Profile Likelihood, 3=One-sided PLL configMgr.nPoints = 20 configMgr.writeXML = True configMgr.histCacheFile = "data/" + configMgr.analysisName + ".root" configMgr.outputFileName = "results/" + configMgr.analysisName + "_Output.root" print "is discovery ? %s" % (myFitType == FitType.Discovery) sample_bkg0 = Sample("bkg0", ROOT.kBlue) sample_bkg0.setStatConfig(True) sample_bkg1 = Sample("bkg1", ROOT.kGreen) sample_bkg1.setStatConfig(True) sample_data = Sample("data", ROOT.kBlack) sample_data.setData() sample_sig = Sample("sig", ROOT.kRed) sample_sig.setStatConfig(True) all_samples = [sample_bkg0, sample_bkg1, sample_data] # systematics norm_syst_bkg0 = Systematic("Norm_Bkg0", configMgr.weights, 1.0 + 0.5, 1.0 - 0.5, "user", "userHistoSys") sample_bkg0.addSystematic(norm_syst_bkg0)
useStat = True if userOpts.splitMCSys : useStat = False # If using stat set some limits tlx.statErrThreshold = 0.001 # define quantities to make configuration below easier SR = userOpts.signalRegion lepChan = userOpts.leptonChannel if userOpts.do2L : # ----------------------------------------------------- # # Zjets # # ----------------------------------------------------- # zjetsSample.setStatConfig(useStat) if userOpts.splitMCSys : zjetsSample.addSystematic(sysObj.AR_mcstat_ZX) zjetsSample.setNormByTheory() zjetsSample = addSys(zjetsSample, False, sysObj) # ----------------------------------------------------- # # Higgs # # ----------------------------------------------------- # higgsSample.setStatConfig(useStat) if userOpts.splitMCSys : higgsSample.addSystematic(sysObj.AR_mcstat_H) higgsSample.setNormByTheory() higgsSample = addSys(higgsSample, False, sysObj) # ----------------------------------------------------- #
def common_setting(mass): from configManager import configMgr from ROOT import kBlack, kGray, kRed, kPink, kViolet, kBlue, kAzure, kGreen, \ kOrange from configWriter import Sample from systematic import Systematic import os color_dict = { "Zbb": kAzure, "Zbc": kAzure, "Zbl": kAzure, "Zcc": kAzure, "Zcl": kBlue, "Zl": kBlue, "Wbb": kGreen, "Wbc": kGreen, "Wbl": kGreen, "Wcc": kGreen, "Wcl": kGreen, "Wl": kGreen, "ttbar": kOrange, "stop": kOrange, "stopWt": kOrange, "ZZPw": kGray, "WZPw": kGray, "WWPw": kGray, "fakes": kPink, "Zjets": kAzure, "Wjets": kGreen, "top": kOrange, "diboson": kGray, "$Z\\tau\\tau$+HF": kAzure, "$Z\\tau\\tau$+LF": kBlue, "$W$+jets": kGreen, "$Zee$": kViolet, "Zhf": kAzure, "Zlf": kBlue, "Zee": kViolet, "others": kViolet, signal_prefix + "1000": kRed, signal_prefix + "1100": kRed, signal_prefix + "1200": kRed, signal_prefix + "1400": kRed, signal_prefix + "1600": kRed, signal_prefix + "1800": kRed, signal_prefix + "2000": kRed, signal_prefix + "2500": kRed, signal_prefix + "3000": kRed, # Add your new processes here "VH": kGray + 2, "VHtautau": kGray + 2, "ttH": kGray + 2, } ########################## # Setting the parameters of the hypothesis test configMgr.doExclusion = True # True=exclusion, False=discovery configMgr.nTOYs = 10000 # default=5000 configMgr.calculatorType = 0 # 2=asymptotic calculator, 0=frequentist calculator configMgr.testStatType = 3 # 3=one-sided profile likelihood test statistic (LHC default) configMgr.nPoints = 30 # number of values scanned of signal-strength for upper-limit determination of signal strength. configMgr.writeXML = False configMgr.seed = 40 configMgr.toySeedSet = True configMgr.toySeed = 400 # Pruning # - any overallSys systematic uncertainty if the difference of between the up variation and the nominal and between # the down variation and the nominal is below a certain (user) given threshold # - for histoSys types, the situation is more complex: # - a first check is done if the integral of the up histogram - the integral of the nominal histogram is smaller # than the integral of the nominal histogram and the same for the down histogram # - then a second check is done if the shape of the up, down and nominal histograms is very similar Only when both # conditions are fulfilled the systematics will be removed. # default is False, so the pruning is normally not enabled configMgr.prun = True # The threshold to decide if an uncertainty is small or not is set by configMgr.prunThreshold = 0.005 # where the number gives the fraction of deviation with respect to the nominal histogram below which an uncertainty # is considered to be small. The default is currently set to 0.01, corresponding to 1 % (This might be very aggressive # for the one or the other analyses!) configMgr.prunThreshold = 0.005 # method 1: a chi2 test (this is still a bit experimental, so watch out if this is working or not) # method 2: checking for every bin of the histograms that the difference between up variation and nominal and down (default) configMgr.prunMethod = 2 # variation and nominal is below a certain threshold. # Smoothing: HistFitter does not provide any smoothing tools. # More Details: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HistFitterAdvancedTutorial#Pruning_in_HistFitter ########################## # Keep SRs also in background fit confuguration configMgr.keepSignalRegionType = True configMgr.blindSR = BLIND # Give the analysis a name configMgr.analysisName = "bbtautau" + "X" + mass configMgr.histCacheFile = "data/" + configMgr.analysisName + ".root" configMgr.outputFileName = "results/" + configMgr.analysisName + "_Output.root" # Define cuts configMgr.cutsDict["SR"] = "1." # Define weights configMgr.weights = "1." # Define samples list_samples = [] yields_mass = yields[mass] for process, yields_process in yields_mass.items(): if process == 'data' or signal_prefix in process: continue # print("-> {} / Colour: {}".format(process, color_dict[process])) bkg = Sample(str(process), color_dict[process]) bkg.setStatConfig(stat_config) # OLD: add lumi uncertainty (bkg/sig correlated, not for data-driven fakes) # NOW: add lumi by hand bkg.setNormByTheory(False) noms = yields_process["nEvents"] errors = yields_process["nEventsErr"] if use_mcstat else [0.0] # print(" nEvents (StatError): {} ({})".format(noms, errors)) bkg.buildHisto(noms, "SR", my_disc, 0.5) bkg.buildStatErrors(errors, "SR", my_disc) if not stat_only and not no_syst: if process == 'fakes': key_here = "ATLAS_FF_1BTAG_SIDEBAND_Syst_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.50, 0.50, "user", syst_type)) else: key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) for key, values in yields_process.items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue # this should not be applied on the Sherpa if process == 'Zhf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue if process == 'Zlf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] bkg.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) list_samples.append(bkg) # FIXME: This is unusual! top = Sample('top', kOrange) top.setStatConfig(False) # No stat error top.setNormByTheory(False) # consider lumi for it top.buildHisto([0.00001], "SR", my_disc, 0.5) # small enough # HistFitter can accept such large up ratio # Systematic(name, weight, ratio_up, ratio_down, syst_type, syst_fistfactory_type) if not stat_only and not no_syst: key_here = 'ATLAS_TTBAR_YIELD_UPPER_hadhad' if not impact_check_continue(dict_syst_check, key_here): top.addSystematic( Systematic(key_here, configMgr.weights, unc_ttbar[mass], 0.9, "user", syst_type)) list_samples.append(top) sigSample = Sample("Sig", kRed) sigSample.setNormFactor("mu_Sig", 1., 0., 100.) #sigSample.setStatConfig(stat_config) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) noms = yields_mass[signal_prefix + mass]["nEvents"] errors = yields_mass[signal_prefix + mass]["nEventsErr"] if use_mcstat else [0.0] sigSample.buildHisto([n * MY_SIGNAL_NORM * 1e-3 for n in noms], "SR", my_disc, 0.5) #sigSample.buildStatErrors(errors, "SR", my_disc) for key, values in yields_mass[signal_prefix + mass].items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] if not stat_only and not no_syst: sigSample.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) if not stat_only and not no_syst: key_here = "ATLAS_SigAccUnc_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, [1 + unc_sig_acc[mass] for i in range(my_nbins)], [1 - unc_sig_acc[mass] for i in range(my_nbins)], "user", syst_type)) key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) list_samples.append(sigSample) # Set observed and expected number of events in counting experiment n_SPlusB = yields_mass[signal_prefix + mass]["nEvents"][0] + sum_of_bkg(yields_mass)[0] n_BOnly = sum_of_bkg(yields_mass)[0] if BLIND: # configMgr.useAsimovSet = True # Use the Asimov dataset # configMgr.generateAsimovDataForObserved = True # Generate Asimov data as obsData for UL # configMgr.useSignalInBlindedData = False ndata = sum_of_bkg(yields_mass) else: try: ndata = yields_mass["data"]["nEvents"] except: ndata = [0. for _ in range(my_nbins)] lumiError = 0.017 # Relative luminosity uncertainty dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto(ndata, "SR", my_disc, 0.5) list_samples.append(dataSample) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples(list_samples) ana.setSignalSample(sigSample) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement", lumi=1.0, lumiErr=lumiError / 100000.) # make it very small so that pruned # we use the one added by hand meas.addPOI("mu_Sig") #meas.statErrorType = "Poisson" # Fix the luminosity in HistFactory to constant meas.addParamSetting("Lumi", True, 1) # Add the channel chan = ana.addChannel(my_disc, ["SR"], my_nbins, my_xmin, my_xmax) chan.blind = BLIND #chan.statErrorType = "Poisson" ana.addSignalChannels([chan]) # These lines are needed for the user analysis to run # Make sure file is re-made when executing HistFactory if configMgr.executeHistFactory: if os.path.isfile("data/%s.root" % configMgr.analysisName): os.remove("data/%s.root" % configMgr.analysisName)
wait(3) log.info("No panicking detected, continuing...") ####################################################################### # List of samples and their plotting colours ####################################################################### #-------------------------- # Diboson #-------------------------- # NB: note that theoSys on diboson are applied on the level of the region definitions, # since we have one for the SR and one for the CR dibosonSample = Sample(zlFitterConfig.dibosonSampleName, kRed+3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(zlFitterConfig.useStat) #-------------------------- # QCD #-------------------------- qcdSample = Sample(zlFitterConfig.qcdSampleName, kOrange+2) if zlFitterConfig.useDDQCDsample:#normWeight is 0 => remove it qcdSample.setTreeName("Data_SRAll") else : qcdSample.setTreeName("QCD_SRAll") qcdSample.setNormFactor("mu_"+zlFitterConfig.qcdSampleName, 1., 0., 50000000.) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(zlFitterConfig.useStat) qcdWeight = 1 nJets = channel.nJets
# efake_sample = Sample("efake15", color("efake")) # jfake_sample = Sample("jfake15", color("jfake")) # elif data_name == 'data16': # efake_sample = Sample("efake16", color("efake")) # jfake_sample = Sample("jfake16", color("jfake")) # else: # should be 'data' efake_sample = Sample("efake", color("efake")) jfake_sample = Sample("jfake", color("jfake")) # Data data_sample = Sample('data', ROOT.kBlack) data_sample.setData() # stat uncertainty # data_sample.setStatConfig(useStat) wjets_sample.setStatConfig(useStat) zjets_sample.setStatConfig(useStat) wgamma_sample.setStatConfig(useStat) zllgamma_sample.setStatConfig(useStat) znunugamma_sample.setStatConfig(useStat) ttbar_sample.setStatConfig(useStat) ttbarg_sample.setStatConfig(useStat) photonjet_sample.setStatConfig(useStat) multijet_sample.setStatConfig(useStat) diphoton_sample.setStatConfig(useStat) vqqgamma_sample.setStatConfig(useStat) efake_sample.setStatConfig(False) jfake_sample.setStatConfig(False) data_samples = [
high = [nominal_weight_bkg, '(1+0.5*(ht_signal>500))'], low = [nominal_weight_bkg, '(1-0.5*(ht_signal>500))'], type = 'weight', method = 'overallSys') # -------------------------------------------- # - List of samples and their plotting colours # -------------------------------------------- sample_list_bkg = [] sample_list_data = [] sample_list_sig = [] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Other other_sample = Sample("Other", kAzure+8) other_sample.setStatConfig(use_stat) other_sample.setNormByTheory() sample_list_bkg.append(other_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # single top single_top_sample = Sample("SingleTop", kGreen-1) single_top_sample.setStatConfig(use_stat) single_top_sample.setNormByTheory() sample_list_bkg.append(single_top_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Z/gamma* z_sample = Sample("ZGamma", kRed+1 )
# use_this = False # for oksampk in ok_samples : # if oksampk in s : use_this = True # if not use_this : continue # if "225" not in s : continue # if "135" not in s : continue # s_ = s.replace(".0", "") s_ = s extlx = configMgr.addFitConfigClone(tlx, "Sig_%s" % s_) userPrint(" > Adding signal sample to exclusion fit config : %s" % s) sigSample_ = Sample(s, kPink) sigSample_.setFileList(signal_files) sigSample_.setNormByTheory() sigSample_.setStatConfig(not runOptions.doSplitMCsys()) if runOptions.doSplitMCsys(): sigSample_.addSystematic(sysObj.mcstat_SIG) ## set the signal weight to be the weight with no PUPW sigSample_.weights = ["eventweightNOPUPW"] if runOptions.doTheoryBand(): ### TODO check if we need the configMgr setRunOnlyNominalXSec sigXSSyst = Systematic( "SigXSec", ["eventweightNOPUPW"], 1.07, 0.93, "user", "overallSys" ) ### TODO add xsec util to grab the uncertainties on xsec (rather than storing in tree) # sigXSSyst = Systematic("SigXSec", configMgr.weights, 1.07, 0.93, "user", "overallSys") ### TODO add xsec util to grab the uncertainties on xsec (rather than storing in tree) sigSample_.addSystematic(sigXSSyst) ## add systematics sigSample_ = addSys(sigSample_, False, sysObj, True)