# model
        self.evaluate(model_i)  


if __name__ == '__main__':
    config_i = config_instructor()
    args = xworld_args.parser().parse_args()
    args.visible_radius_unit_side = config_i.visible_radius_unit_side
    args.visible_radius_unit_front = config_i.visible_radius_unit_front
    args.ego_centric = config_i.ego_centric
    args.map_config = config_i.map_config_file
    args.goal_id = 0
    args.israndom_goal = False
    env_i = xworld_navi_goal_gt.XWorldNaviGoal(args)

    config_p = config_planner()
    args = xworld_args.parser().parse_args()
    args.visible_radius_unit_side = config_p.visible_radius_unit_side
    args.visible_radius_unit_front = config_p.visible_radius_unit_front
    args.ego_centric = config_p.ego_centric
    args.map_config = config_p.map_config_file
    args.goal_id = 0
    args.israndom_goal = False
    env_p = xworld_navi_goal_gt.XWorldNaviGoal(args)

    # load model
    g_i = tf.Graph()
    model_i = DRQN_instructor(env_i, config_i, g_i)
    model_i.initialize()

    # learning rate schedule
        # model
        self.evaluate(model_a)  


if __name__ == '__main__':
    config_a = config_agent()
    args = xworld_args.parser().parse_args()
    args.visible_radius_unit_side = config_a.visible_radius_unit_side
    args.visible_radius_unit_front = config_a.visible_radius_unit_front
    args.ego_centric = config_a.ego_centric
    args.map_config = config_a.map_config_file
    args.goal_id = 0
    args.israndom_goal = False
    env_a = xworld_navi_goal_obs_crop.XWorldNaviGoal(args)

    config_i = config_planner()
    args = xworld_args.parser().parse_args()
    args.visible_radius_unit_side = config_i.visible_radius_unit_side
    args.visible_radius_unit_front = config_i.visible_radius_unit_front
    args.ego_centric = config_i.ego_centric
    args.map_config = config_i.map_config_file
    args.goal_id = 0
    args.israndom_goal = False
    env_i = xworld_navi_goal_gt_dnc.XWorldNaviGoal(args)

    # load model
    g_a = tf.Graph()
    model_a = DRQN(env_a, config_a, g_a)
    model_a.initialize()

    # exploration strategy