# model self.evaluate(model_i) if __name__ == '__main__': config_i = config_instructor() args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config_i.visible_radius_unit_side args.visible_radius_unit_front = config_i.visible_radius_unit_front args.ego_centric = config_i.ego_centric args.map_config = config_i.map_config_file args.goal_id = 0 args.israndom_goal = False env_i = xworld_navi_goal_gt.XWorldNaviGoal(args) config_p = config_planner() args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config_p.visible_radius_unit_side args.visible_radius_unit_front = config_p.visible_radius_unit_front args.ego_centric = config_p.ego_centric args.map_config = config_p.map_config_file args.goal_id = 0 args.israndom_goal = False env_p = xworld_navi_goal_gt.XWorldNaviGoal(args) # load model g_i = tf.Graph() model_i = DRQN_instructor(env_i, config_i, g_i) model_i.initialize() # learning rate schedule
# model self.evaluate(model_a) if __name__ == '__main__': config_a = config_agent() args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config_a.visible_radius_unit_side args.visible_radius_unit_front = config_a.visible_radius_unit_front args.ego_centric = config_a.ego_centric args.map_config = config_a.map_config_file args.goal_id = 0 args.israndom_goal = False env_a = xworld_navi_goal_obs_crop.XWorldNaviGoal(args) config_i = config_planner() args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config_i.visible_radius_unit_side args.visible_radius_unit_front = config_i.visible_radius_unit_front args.ego_centric = config_i.ego_centric args.map_config = config_i.map_config_file args.goal_id = 0 args.israndom_goal = False env_i = xworld_navi_goal_gt_dnc.XWorldNaviGoal(args) # load model g_a = tf.Graph() model_a = DRQN(env_a, config_a, g_a) model_a.initialize() # exploration strategy