def load_index(self, fn): """ Loads a pre-computed index (or indices) so we can answer queries. Input: fn - file name of pickled index. """ return utils.load_obj(name=fn)
def update_tweets_postings(self): """ :return: """ for i in range(self.tweets_postings_counter): tweets_postings_file = utils.load_obj( str(i + 1), self.config.get_tweets_postings_path()) for doc_id in tweets_postings_file.keys(): tweet_posting = tweets_postings_file[doc_id] self.update_single_tweet_postings(tweet_posting) utils.save_obj(tweets_postings_file, str(i + 1), self.config.get_tweets_postings_path())
def get_relevant_tweets_postings(self, relevant_tweets): """ iterates over tweets postings and extracts postings of all relevant tweets. :param relevant_tweets: set of relevant tweets based on query's terms :return: postings of every relevant tweet. """ relevant_tweets_information = dict() for i in range(self._indexer.get_tweets_postings_counter()): tweets_postings_file = utils.load_obj( str(i + 1), self._indexer.get_config().get_tweets_postings_path()) for doc_id in relevant_tweets: if doc_id in tweets_postings_file.keys(): relevant_tweets_information[doc_id] = tweets_postings_file[ doc_id] return relevant_tweets_information