from confusion_matrix import ConfusionMatrix import cv2 import numpy as np matrix = ConfusionMatrix(size=20) names = open('/media/rgh/rgh-data/Dataset/Lip_320/val.txt', 'r') gt_label_dir = '/media/rgh/rgh-data/Dataset/Lip_320/label/val/' predict_dir = '/' for index, name in enumerate(names): name = name.strip() print index, name gt = cv2.imread(gt_label_dir + name + '.png', flags=cv2.IMREAD_GRAYSCALE) result = cv2.imread(predict_dir + name + '.png', flags=cv2.IMREAD_GRAYSCALE) matrix.update(gt, result) print matrix.accuracy(), matrix.fg_accuracy(), matrix.avg_precision( ), matrix.avg_recall(), matrix.avg_f1score() print matrix.f1score()
from confusion_matrix import ConfusionMatrix from util.common import color import cv2 import numpy as np matrix = ConfusionMatrix(size=20) names = open('/media/rgh/rgh-data/Dataset/Lip_320/val.txt','r') gt_label_dir = '/media/rgh/rgh-data/Dataset/Lip_320/label/val/' img_dir = '/media/rgh/rgh-data/Dataset/Lip_320/image/val/' result_dir = '/media/rgh/rgh-data/PycharmProjects/cvpr2018/output/vgg16/Lip_320_val/parsing_fix/vgg16_faster_rcnn_iter_70000/parsing/' for index, name in enumerate(names): name = name.strip() print index, name img = cv2.imread(img_dir + name + '.jpg') gt = cv2.imread(gt_label_dir+name+'.png',flags=cv2.IMREAD_GRAYSCALE) #print img.shape gt_viz = color(gt) #print gt_viz.shape result = cv2.imread(result_dir+name+'.png',flags=cv2.IMREAD_GRAYSCALE) result_viz = color(result) #print result_viz.shape line = np.zeros((gt.shape[0], 5, 3)) fuse = np.concatenate((img, line, result_viz, line, gt_viz), 1) cv2.imwrite('/media/rgh/rgh-data/PycharmProjects/cvpr2018/output/vgg16/Lip_320_val/parsing_fix/vgg16_faster_rcnn_iter_70000/parsing_viz/' +name+'.png',fuse) matrix.update(gt, result) print matrix.accuracy(), matrix.fg_accuracy(), matrix.avg_precision(), matrix.avg_recall(), matrix.avg_f1score() print matrix.f1score()