def run(): # parse arguments args = parse_arguments() workflow_dir = args.workflow_dir task_dir = args.task_dir # get branch meta data branch_meta_file = os.path.join(workflow_dir, 'branch_meta.json') with open(branch_meta_file, 'r') as f_in: branch_meta = json.load(f_in) # get predictor, training/test # datasets data task_meta = get_task_meta_data(task_dir) # get evaluation data evaluation_results_file = os.path.join(task_dir, 'evaluation_results.json') with open(evaluation_results_file, 'r') as f_in: evaluation_results = json.load(f_in) # compile and add timestamp, date timestamp = time.time() record = { "timestamp": time.time(), "date": datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") } record.update(branch_meta) record.update(task_meta) record.update({"evaluation_results": evaluation_results}) # save record to json for backup with open('record_to_push.json', 'w') as f_out: json.dump(record, f_out, indent=4, sort_keys=True) # connect to db and table performance_db = connector.connect_to_db('PredictorPerformanceDatabase') task_name = task_meta['predictor_input']['prediction_task'].split('(')[0] performance_table = getattr(performance_db, 'cnn_{0}_table'.format(task_name)) # insert the record performance_table.insert_one(record)
from connector import connect_to_db con = connect_to_db() cur = con.cursor() insert_in_test1 = "UPDATE TEST1 set NAME = 'Vasya' where ADMISSION = 1" cur.execute(insert_in_test1) con.commit() con.close()