from container import ModelContainer from experiments.conv_test.train import construct if __name__ == '__main__': import sys # basic arg parsing, infer name name = sys.argv[0].split('/')[-2] if len(sys.argv) < 2: print "Usage: submit weight_file" sys.exit() c = ModelContainer(name,construct(),10,"adam") c.evaluate(str(sys.argv[1]))
fcn = Dropout(.5)(fcn) fcn = Dense(128)(fcn) fcn = Dense(1)(fcn) return Model(input=inp, output=fcn) datagen_args = dict(rotation_range=5., width_shift_range=0.1, height_shift_range=0.1, zoom_range=.1, channel_shift_range=0., horizontal_flip=False) if __name__ == '__main__': import sys # basic arg parsing, infer name if len(sys.argv) < 4: print "Usage: train nb_epoch batch_size samples_per_epoch" sys.exit() name = sys.argv[0].split('/')[-2] model = ModelContainer(name, construct(), "adam", datagen_args=datagen_args) model.train(nb_epoch=int(sys.argv[1]), batch_size=int(sys.argv[2]), samples_per_epoch=int(sys.argv[3]))