def test_load_repository_valid_input(self): loader = DataLoader.DataLoader() repository_test = loader.db.query(Repository).first() repository = loader.load_repository(repository_test.id) assert repository == repository_test
import os import tensorflow as tf from context import Yolov3 from context import yolo_anchors, yolo_anchor_masks, DataLoader physical_devices = tf.config.experimental.list_physical_devices('GPU') for physical_device in physical_devices: tf.config.experimental.set_memory_growth(physical_device, True) image_size = 416 tfrecord_file = os.path.abspath('data/processed/coco2017_train.tfrecord') dataset = DataLoader(yolo_anchors, yolo_anchor_masks, batch_size=4, training=True).from_files(tfrecord_file) model = Yolov3(image_size, channels=3, anchors=yolo_anchors, masks=yolo_anchor_masks, training=False) for batch in dataset.take(1): pass pred = model(batch[0]) print(pred)
def test_store_solidity_code_valid_code(self): loader = DataLoader.DataLoader() code = loader.db.query(Code).first() assert loader.store_solidity_code(code) is None
def test_load_repository_no_input(self): loader = DataLoader.DataLoader() assert loader.load_repository(None) is None
def test_store_solidity_code_no_input(self): loader = DataLoader.DataLoader() code = None assert loader.store_solidity_code(code) is None
def test_load_owner_not_found(self): loader = DataLoader.DataLoader() owner_id = 0 assert loader.load_owner(owner_id) is None
def test_load_owner_valid_input(self): loader = DataLoader.DataLoader() owner_test = loader.db.query(Owner).first() owner = loader.load_owner(owner_test.id) assert owner == owner_test
def test_load_owner_no_input(self): loader = DataLoader.DataLoader() assert loader.load_owner(None) is None
def test_load_repository_not_found(self): loader = DataLoader.DataLoader() repository_id = 0 assert loader.load_repository(repository_id) is None