示例#1
0
def cnn_for_sentence_encoding(
        rep_tensor, rep_mask, filter_sizes=(3,4,5), num_filters=200, scope=None,
        is_train=None, keep_prob=1., wd=0.):
    """

    :param rep_tensor:
    :param rep_mask:
    :param filter_sizes:
    :param num_filters:
    :param scope:
    :param is_train:
    :param keep_prob:
    :param wd:
    :return:
    """
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]

    with tf.variable_scope(scope or 'cnn_for_sentence_encoding'):
        rep_tensor = mask_for_high_rank(rep_tensor, rep_mask)
        rep_tensor_expand = tf.expand_dims(rep_tensor, 3)
        rep_tensor_expand_dp = dropout(rep_tensor_expand, keep_prob, is_train)

        # Create a convolution + maxpool layer for each filter size
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.variable_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, ivec, 1, num_filters]
                W = tf.get_variable('W', filter_shape, tf.float32)
                b = tf.get_variable('b', [num_filters], tf.float32)

                conv = tf.nn.conv2d(
                    rep_tensor_expand_dp,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")  # bs, sl-fs+1, 1, fn
                # Maxpooling over the outputs
                # pooled = tf.nn.max_pool(
                #     h,
                #     ksize=[1, sl - filter_size + 1, 1, 1],
                #     strides=[1, 1, 1, 1],
                #     padding='VALID',
                #     name="pool")
                pooled = tf.reduce_max(h, 1, True)  # bs, 1, 1, fn
                pooled_outputs.append(pooled)

        # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        h_pool = tf.concat(pooled_outputs, 3)
        h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])

        if wd > 0.:
            add_reg_without_bias()

        return h_pool_flat
示例#2
0
def hierarchical_cnn_res_gate(
        rep_tensor, rep_mask, n_gram=5, layer_num=5, hn=None, scope=None,
        is_train=None, keep_prob=1., wd=0.):
    # padding
    if n_gram % 2 == 1:
        padding_front = padding_back = int((n_gram - 1) / 2)
    else:
        padding_front = (n_gram - 1) // 2
        padding_back = padding_front + 1
    padding = [[0, 0], [padding_front, padding_back], [0, 0], [0, 0]]

    # lengths
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
    org_ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or org_ivec

    with tf.variable_scope(scope or 'cnn_for_sentence_encoding'):
        rep_tensor = mask_for_high_rank(rep_tensor, rep_mask)  # bs, sl, hn

        iter_rep = rep_tensor
        layer_res_list = []

        for layer_idx in range(layer_num):
            with tf.variable_scope("conv_maxpool_%s" % layer_idx):

                iter_rep_etd = tf.expand_dims(iter_rep, 3)  # bs,sl,hn,1
                iter_rep_etd_dp = dropout(iter_rep_etd, keep_prob, is_train)
                # Convolution Layer
                feature_size = org_ivec if layer_idx == 0 else ivec
                filter_shape = [n_gram, feature_size, 1, 2 * ivec]
                W = tf.get_variable('W', filter_shape, tf.float32)
                b = tf.get_variable('b', [2 * ivec], tf.float32)
                iter_rep_etd_pad = tf.pad(iter_rep_etd_dp, padding)
                conv = tf.nn.conv2d(
                    iter_rep_etd_pad,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                map_res = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")  # bs,sl,1,2hn
                map_res = tf.squeeze(map_res, [2])  # bs,sl,2*hn
                # gate
                map_res_a, map_res_b = tf.split(map_res, num_or_size_splits=2, axis=2)
                iter_rep = map_res_a * tf.nn.sigmoid(map_res_b)

                # res
                if len(layer_res_list) > 0:
                    iter_rep = iter_rep + layer_res_list[-1]
                layer_res_list.append(iter_rep)

        if wd > 0.:
            add_reg_without_bias()
        return iter_rep
示例#3
0
def cnn_for_context_fusion(
        rep_tensor, rep_mask, filter_sizes=(3,4,5), num_filters=200, scope=None,
        is_train=None, keep_prob=1., wd=0.):
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]

    with tf.variable_scope(scope or 'cnn_for_sentence_encoding'):
        rep_tensor = mask_for_high_rank(rep_tensor, rep_mask)
        rep_tensor_expand = tf.expand_dims(rep_tensor, 3)  # bs, sl,
        rep_tensor_expand_dp = dropout(rep_tensor_expand, keep_prob, is_train)

        # Create a convolution + maxpool layer for each filter size
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.variable_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, ivec, 1, num_filters]
                W = tf.get_variable('W', filter_shape, tf.float32)
                b = tf.get_variable('b', [num_filters], tf.float32)

                # # pading in the sequence
                if filter_size % 2 == 1:
                    padding_front = padding_back = int((filter_size - 1) / 2)
                else:
                    padding_front = (filter_size - 1) // 2
                    padding_back = padding_front + 1
                padding = [[0, 0], [padding_front, padding_back], [0, 0], [0, 0]]
                rep_tensor_expand_dp_pad = tf.pad(rep_tensor_expand_dp, padding)

                conv = tf.nn.conv2d(
                    rep_tensor_expand_dp_pad,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")  # bs, sl, 1, fn
                h_squeeze = tf.squeeze(h, [2])  # bs, sl, fn
                pooled_outputs.append(h_squeeze)

        # Combine all the pooled features
        result = tf.concat(pooled_outputs, 2)  # bs, sl, 3 * fn

        if wd > 0.:
            add_reg_without_bias()

        return result
示例#4
0
def directional_attention_with_dense(rep_tensor,
                                     rep_mask,
                                     direction=None,
                                     scope=None,
                                     keep_prob=1.,
                                     is_train=None,
                                     wd=0.,
                                     activation='elu',
                                     tensor_dict=None,
                                     name=None,
                                     hn=None):
    def scaled_tanh(x, scale=5.):
        return scale * tf.nn.tanh(1. / scale * x)

    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = hn or rep_tensor.get_shape()[2]
    with tf.variable_scope(scope or 'directional_attention_%s' % direction
                           or 'diag'):
        # mask generation
        sl_indices = tf.range(sl, dtype=tf.int32)
        sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
        if direction is None:
            direct_mask = tf.cast(
                tf.diag(-tf.ones([sl], tf.int32)) + 1, tf.bool)
        else:
            if direction == 'forward':
                direct_mask = tf.greater(sl_row, sl_col)
            else:
                direct_mask = tf.greater(sl_col, sl_row)
        direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0),
                                   [bs, 1, 1])  # bs,sl,sl
        rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1),
                                [1, sl, 1])  # bs,sl,sl
        attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile)  # bs,sl,sl

        # non-linear
        rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map',
                                 activation, False, wd, keep_prob, is_train)
        rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1),
                               [1, sl, 1, 1])  # bs,sl,sl,vec
        rep_map_dp = dropout(rep_map, keep_prob, is_train)

        # attention
        with tf.variable_scope('attention'):  # bs,sl,sl,vec
            f_bias = tf.get_variable('f_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            dependent = linear(rep_map_dp,
                               ivec,
                               False,
                               scope='linear_dependent')  # bs,sl,vec
            dependent_etd = tf.expand_dims(dependent, 1)  # bs,1,sl,vec
            head = linear(rep_map_dp, ivec, False,
                          scope='linear_head')  # bs,sl,vec
            head_etd = tf.expand_dims(head, 2)  # bs,sl,1,vec

            logits = scaled_tanh(dependent_etd + head_etd + f_bias,
                                 5.0)  # bs,sl,sl,vec

            logits_masked = exp_mask_for_high_rank(logits, attn_mask)
            attn_score = tf.nn.softmax(logits_masked, 2)  # bs,sl,sl,vec
            attn_score = mask_for_high_rank(attn_score, attn_mask)

            attn_result = tf.reduce_sum(attn_score * rep_map_tile,
                                        2)  # bs,sl,vec

        with tf.variable_scope('output'):
            o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            # input gate
            fusion_gate = tf.nn.sigmoid(
                linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd,
                       keep_prob, is_train) +
                linear(attn_result, ivec, True, 0., 'linear_fusion_a', False,
                       wd, keep_prob, is_train) + o_bias)
            output = fusion_gate * rep_map + (1 - fusion_gate) * attn_result
            output = mask_for_high_rank(output, rep_mask)

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name + '_dependent'] = dependent
            tensor_dict[name + '_head'] = head
            tensor_dict[name] = attn_score
            tensor_dict[name + '_gate'] = fusion_gate
        return output
示例#5
0
def multi_head_attention_git(rep_tensor,
                             rep_mask,
                             num_heads=8,
                             num_units=64,
                             scope=None,
                             is_train=None,
                             keep_prob=1.,
                             wd=0.):
    '''Applies multihead attention.

    Args:
      queries: A 3d tensor with shape of [N, T_q, C_q].
      keys: A 3d tensor with shape of [N, T_k, C_k].
      num_units: A scalar. Attention size.
      dropout_rate: A floating point number.
      is_training: Boolean. Controller of mechanism for dropout.
      causality: Boolean. If true, units that reference the future are masked.
      num_heads: An int. Number of heads.
      scope: Optional scope for `variable_scope`.
      reuse: Boolean, whether to reuse the weights of a previous layer
        by the same name.

    Returns
      A 3d tensor with shape of (N, T_q, C)
    '''
    causality = False
    with tf.variable_scope(scope or "multihead_attention"):
        # because of self-attention, queries and keys is equal to rep_tensor
        queries = rep_tensor
        keys = rep_tensor

        # Set the fall back option for num_units
        if num_units is None:  # hn
            num_units = queries.get_shape().as_list[-1]

        # Linear projections
        Q = tf.layers.dense(queries, num_units,
                            activation=tf.nn.relu)  # (N, T_q, C)
        K = tf.layers.dense(keys, num_units,
                            activation=tf.nn.relu)  # (N, T_k, C)
        V = tf.layers.dense(keys, num_units,
                            activation=tf.nn.relu)  # (N, T_k, C)

        # Split and concat
        Q_ = tf.concat(tf.split(Q, num_heads, axis=2),
                       axis=0)  # (h*N, T_q, C/h)
        K_ = tf.concat(tf.split(K, num_heads, axis=2),
                       axis=0)  # (h*N, T_k, C/h)
        V_ = tf.concat(tf.split(V, num_heads, axis=2),
                       axis=0)  # (h*N, T_k, C/h)

        # Multiplication
        outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1]))  # (h*N, T_q, T_k)

        # Scale
        outputs = outputs / (K_.get_shape().as_list()[-1]**0.5)

        # Key Masking
        key_masks = rep_mask  # tf.sign(tf.abs(tf.reduce_sum(keys, axis=-1)))  # (N, T_k)
        key_masks = tf.tile(key_masks, [num_heads, 1])  # (h*N, T_k)
        key_masks = tf.tile(tf.expand_dims(key_masks, 1),
                            [1, tf.shape(queries)[1], 1])  # (h*N, T_q, T_k)

        paddings = tf.ones_like(outputs) * (-2**32 + 1)  # exp mask
        outputs = tf.where(key_masks, outputs, paddings)  # (h*N, T_q, T_k)

        # Causality = Future blinding
        if causality:
            diag_vals = tf.ones_like(outputs[0, :, :])  # (T_q, T_k)
            tril = tf.contrib.linalg.LinearOperatorTriL(
                diag_vals).to_dense()  # (T_q, T_k)
            masks = tf.tile(tf.expand_dims(tril, 0),
                            [tf.shape(outputs)[0], 1, 1])  # (h*N, T_q, T_k)

            paddings = tf.ones_like(masks) * (-2**32 + 1)
            outputs = tf.where(tf.equal(masks, 0), paddings,
                               outputs)  # (h*N, T_q, T_k)

        # Activation
        outputs = tf.nn.softmax(outputs)  # (h*N, T_q, T_k)

        # Query Masking
        query_masks = rep_mask  # tf.sign(tf.abs(tf.reduce_sum(queries, axis=-1)))  # (N, T_q)
        query_masks = tf.tile(query_masks, [num_heads, 1])  # (h*N, T_q)
        query_masks = tf.tile(tf.expand_dims(query_masks, -1),
                              [1, 1, tf.shape(keys)[1]])  # (h*N, T_q, T_k)
        outputs *= tf.cast(query_masks,
                           tf.float32)  # broadcasting. (N, T_q, C)

        # Dropouts
        # outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
        outputs = dropout(outputs, keep_prob, is_train)

        # Weighted sum
        outputs = tf.matmul(outputs, V_)  # ( h*N, T_q, C/h)

        # Restore shape
        outputs = tf.concat(tf.split(outputs, num_heads, axis=0),
                            axis=2)  # (N, T_q, C)

        # Residual connection
        # outputs += queries

        # Normalize
        # outputs = normalize(outputs)  # (N, T_q, C)

    return outputs
示例#6
0
def multi_head_attention(rep_tensor,
                         rep_mask,
                         head_num=8,
                         hidden_units_num=64,
                         scope=None,
                         is_train=None,
                         keep_prob=1.,
                         wd=0.):
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]

    with tf.variable_scope(scope or 'multi_head_attention'):

        with tf.variable_scope('positional_encoding'):
            seq_idxs = tf.tile(tf.expand_dims(tf.range(sl), 1),
                               [1, ivec])  # sl, ivec
            feature_idxs = tf.tile(tf.expand_dims(tf.range(ivec), 0),
                                   [sl, 1])  # sl, ivec
            pos_enc = tf.where(
                tf.equal(tf.mod(feature_idxs, 2), 0),
                tf.sin(
                    tf.cast(seq_idxs, tf.float32) / tf.pow(
                        10000., 2.0 * tf.cast(feature_idxs, tf.float32) /
                        (1.0 * ivec))),
                tf.cos(
                    tf.cast(seq_idxs, tf.float32) / tf.pow(
                        10000., 2.0 * tf.cast(feature_idxs - 1, tf.float32) /
                        (1.0 * ivec))),
            )
            rep_tensor_pos = mask_for_high_rank(rep_tensor + pos_enc,
                                                rep_mask)  # bs, sl, ivec

        with tf.variable_scope('multi_head_attention'):
            W = tf.get_variable('W', [3, head_num, ivec, hidden_units_num],
                                tf.float32)
            rep_tile = tf.tile(
                tf.expand_dims(tf.expand_dims(rep_tensor_pos, 0), 0),
                [3, head_num, 1, 1, 1])  # 3,head_num,bs,sl,ivec
            rep_tile_reshape = tf.reshape(
                rep_tile, [3, head_num, bs * sl, ivec])  # head_num,bs*sl,ivec

            maps = tf.reshape(  # 3,head_num,bs*sl,hn ->  3,head_num,bs,sl,hn
                tf.matmul(dropout(rep_tile_reshape, keep_prob, is_train), W),
                [3, head_num, bs, sl, hidden_units_num])
            Q_map, K_map, V_map = tf.split(maps, 3, 0)
            Q_map = tf.squeeze(Q_map, [0])  # head_num,bs,sl,hn
            K_map = tf.squeeze(K_map, [0])  # head_num,bs,sl,hn
            V_map = tf.squeeze(V_map, [0])  # head_num,bs,sl,hn

            # head_num,bs,sl,sl
            # similarity_mat = tf.reduce_sum(Q_map_tile * K_map_tile, -1) / math.sqrt(1. * hidden_units_num)
            similarity_mat = tf.matmul(Q_map, tf.transpose(
                K_map, [0, 1, 3, 2])) / math.sqrt(1. * hidden_units_num)

            # mask: bs,sl -> head_num,bs,sl
            multi_mask = tf.tile(tf.expand_dims(rep_mask, 0),
                                 [head_num, 1, 1])  # head_num,bs,sl
            multi_mask_tile_1 = tf.expand_dims(multi_mask,
                                               2)  # head_num,bs,1,sl
            multi_mask_tile_2 = tf.expand_dims(multi_mask,
                                               3)  # head_num,bs,sl,1
            multi_mask_tile = tf.logical_and(
                multi_mask_tile_1, multi_mask_tile_2)  # head_num,bs,sl,sl
            similarity_mat_masked = exp_mask(
                similarity_mat, multi_mask_tile)  # head_num,bs,sl,sl
            prob_dist = tf.nn.softmax(
                similarity_mat_masked)  # head_num,bs,sl,sl
            prob_dist_dp = dropout(prob_dist, keep_prob, is_train)

            attn_res = tf.matmul(prob_dist_dp, V_map)  # head_num,bs,sl,hn

            attn_res_tran = tf.transpose(attn_res, [1, 2, 0, 3])
            output = tf.reshape(attn_res_tran,
                                [bs, sl, head_num * hidden_units_num])

            if wd > 0.:
                add_reg_without_bias()

            return output