with policy_sess.as_default( ): # create the Controller and build the internal policy network controller = Controller(policy_sess, NUM_LAYERS, state_space, reg_param=REGULARIZATION, exploration=EXPLORATION, controller_cells=CONTROLLER_CELLS, embedding_dim=EMBEDDING_DIM, restore_controller=RESTORE_CONTROLLER) # get an initial random state space if controller needs to predict an # action from the initial state #随机初始化 # state = state_space.get_random_state_space(NUM_LAYERS) state = state_space.get_state([3, 'relu', 3, 'linear']) print("Initial Random State : ", state_space.parse_state_space_list(state)) print() # clear the previous files controller.remove_files() isFirst = True # train for number of trails for trial in range(MAX_TRIALS): if isFirst: actions = state isFirst = False else: with policy_sess.as_default(): K.set_session(policy_sess) actions = controller.get_action(
with policy_sess.as_default(): # create the Controller and build the internal policy network controller = Controller(policy_sess, NUM_LAYERS, state_space, reg_param=REGULARIZATION, exploration=EXPLORATION, controller_cells=CONTROLLER_CELLS, embedding_dim=EMBEDDING_DIM, restore_controller=RESTORE_CONTROLLER) # get an initial random state space if controller needs to predict an # action from the initial state #随机初始化 # state = state_space.get_random_state_space(NUM_LAYERS) state = state_space.get_state([1, 'relu', 1, 'linear']) print("Initial Random State : ", state_space.parse_state_space_list(state)) print() # clear the previous files controller.remove_files() isFirst = True # train for number of trails for trial in range(MAX_TRIALS): if isFirst: actions = state isFirst = False else: np.random.seed() with policy_sess.as_default(): K.set_session(policy_sess)