示例#1
0
文件: pyr.py 项目: 1904114835/txcl
def gup(im):
    F = gskernel(3, 1)
    #    for i in F:
    #        print(i)
    t = conv.Convolve(im, F)  #高斯滤波
    t = gdown(t)  #下采样
    return t[0:int(im.shape[0] / 2), 0:int(im.shape[1] / 2)]
示例#2
0
文件: pyr.py 项目: 1904114835/txcl
def yanzheng(g, l):
    huanyuan = []
    for i in range(len(l)):
        t = l[i] + conv.Convolve(imresize.imresize(g[i + 1], g[i].shape),
                                 gskernel(3, 1), 3)
        huanyuan.append(t)
    listImShow(huanyuan)
    return huanyuan
示例#3
0
文件: pyr.py 项目: 1904114835/txcl
def lpyr(gsim):
    lplcim = []
    for i in range(len(gsim) - 1):
        #        t=gsim[i]-imresize.imresize(gsim[i+1],gsim[i].shape)
        t = gsim[i] - conv.Convolve(
            imresize.imresize(gsim[i + 1], gsim[i].shape), gskernel(3, 1), 3)
        #        tmin=t.min()
        #        t=t+abs(tmin)
        #        tmax=t.max()
        #        t=t/tmax*255.0
        lplcim.append(t)
    return lplcim
示例#4
0
    def set_muti_gpyr(self):

        self.make_list_sigmond()
        self.muti.append([])
        self.muti[0].append(self.im)
        for i in range(self.ceng):
            if i != 0:
                self.muti.append([])
                self.muti[i].append(cv2.pyrDown(self.muti[i - 1][-3]))
            for j in range(self.s):
                self.muti[i].append(
                    conv.Convolve(
                        self.muti[i][0],
                        pyr.gskernel(15,
                                     self.list_sigmond[self.ceng * i + j])))
示例#5
0
def Gsup(im):
    F = gskernel(3, 1)
    t = conv.Convolve(im, F)  #高斯滤波
    t = gdown(t)  #下采样
    return t[0:int(im.shape[0] / 2), 0:int(im.shape[1] / 2)]
示例#6
0
文件: try.py 项目: 1904114835/txcl
    c = Theta * ((bins[index] < Theta) & (Theta < bins[index + 1]))
    avg = c.sum() / hist[index]
    return avg


t = np.zeros((16, 16))

for i in range(t.shape[0]):
    for j in range(t.shape[1]):
        t[i][j] = (8 - i)**2 + (8 - j)**2

imageA = cv2.imread("1.jpg").astype(np.uint8)
#imageA = cv2.imread("left_01.png")
imageA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
t = imageA
conv.show(t)
t = conv.Convolve(t, pyr.gskernel(5, 10))
print(pyr.gskernel(5, 10))
print(cv2.getGaussianKernel(5, 10))
conv.show(t)

sigma = 1.6
m, theta = describe_M_Theta(t, sigma)
print(m.shape, theta.shape)
print(m)
print(theta)

avg = main_direction(theta)

print(avg)