def build_CNN_input(vocab_size=VocabSize, usewords=USEWORDS, skiptop=skipTop, devsplit=DEVSPLIT, verbose=True, **kwargs): """ :param vocab_size: :param usewords: :param skiptop: :param devsplit: :param verbose: :param kwargs: :return: """ if verbose: print('Building CNN Inputs') ((X_train, y_train), (X_dev, y_dev), (X_val, y_val)) = build_design_matrix(vocab_size=vocab_size, use_words=usewords, skip_top=skiptop, dev_split=devsplit, **kwargs ) if verbose: print('X_train shape: {}'.format(X_train.shape)) print('X_dev shape: {}'.format(X_dev.shape)) print('X_test shape: {}'.format(X_val.shape)) print('y_train shape: {}'.format(y_train.shape)) print('y_dev shape: {}'.format(y_dev.shape)) print('y_test shape: {}'.format(y_val.shape)) return {'training': (X_train, y_train), "dev": (X_dev, y_dev), "val": (X_val, y_val)}
def build_CNN_input(usewords=USEWORDS, skiptop=skipTop, devsplit=DEVSPLIT, verbose=True): print('Building input') ((X_train, y_train), (X_dev, y_dev), (X_test, y_test)) = build_design_matrix(VocabSize, use_words=usewords, skip_top=skiptop, dev_split=devsplit) if verbose: print(len(X_train), 'train sequences') print(len(X_dev), 'test sequences') print('X_train shape:', X_train.shape) print('X_dev shape:', X_dev.shape) print('y_train shape:', y_train.shape) print('y_dev shape:', y_dev.shape) return X_train, y_train, X_dev, y_dev, X_test, y_test
pool_len2 = 2 num_filters3 = 300 filter_length3 = 4 stride_len3 = 1 pool_len3 = 2 embedding_dims = 200 hidden_dims = 100 num_epochs = 5 print( 'Loading data...' ) ((X_train, y_train), (X_test, y_test)) = build_design_matrix( VocabSize, use_words = USEWORDS, skip_top = skipTop, dev_split = DEVSPLIT ) print( len( X_train ), 'train sequences' ) print( len( X_test ), 'test sequences' ) print( 'X_train shape:', X_train.shape ) print( 'X_test shape:', X_test.shape ) print( 'Build model...' ) model = Sequential( ) # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add( Embedding( VocabSize, embedding_dims, input_length = maxReviewLen ) )
def train_siamese_model(): print( 'Loading data...' ) ((X_train, y_train), (X_test, y_test)) = build_design_matrix( VocabSize, use_words = USEWORDS, skip_top = skipTop, dev_split = DEVSPLIT ) print( len( X_train ), 'train sequences' ) print( len( X_test ), 'test sequences' ) print( 'X_train shape:', X_train.shape ) print( 'X_test shape:', X_test.shape ) print( 'Build model...' ) #LEFT and RIGHT branches of siamese network modelL = Sequential( ) modelR = Sequential( ) # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions modelL.add( Embedding( VocabSize, embedding_dims, input_length = maxReviewLen ) ) modelR.add( Embedding( VocabSize, embedding_dims, input_length = maxReviewLen ) ) modelL.add( Dropout( 0.10 ) ) modelR.add( Dropout( 0.10 ) ) ###init changed from uniform to glorot_norm modelL.add( Convolution1D( nb_filter = num_filters1, filter_length = filter_length1, border_mode = 'valid', activation = 'relu', subsample_length = stride_len1, init = 'uniform' ) ) modelR.add( Convolution1D( nb_filter = num_filters1, filter_length = filter_length1, border_mode = 'valid', activation = 'relu', subsample_length = stride_len1, init = 'uniform' ) ) # input_length=maxReviewLen, input_dim=VocabSize modelL.add( Dropout( 0.25 ) ) modelR.add( Dropout( 0.25 ) ) modelL.add( MaxPooling1D( pool_length = 2 ) ) modelR.add( MaxPooling1D( pool_length = 2 ) ) modelL.add( Convolution1D( nb_filter = num_filters2, filter_length = filter_length2, border_mode = 'valid', activation = 'relu', subsample_length = stride_len2, init = 'uniform' ) ) modelR.add( Convolution1D( nb_filter = num_filters2, filter_length = filter_length2, border_mode = 'valid', activation = 'relu', subsample_length = stride_len2, init = 'uniform' ) ) modelL.add( Dropout( 0.40 ) ) modelR.add( Dropout( 0.40 ) ) # we use standard max pooling (halving the output of the previous layer): modelL.add( MaxPooling1D( pool_length = 2 ) ) modelR.add( MaxPooling1D( pool_length = 2 ) ) modelL.add( Convolution1D( nb_filter = num_filters3, filter_length = filter_length3, border_mode = 'valid', activation = 'relu', subsample_length = stride_len3, init = 'uniform' ) ) modelR.add( Convolution1D( nb_filter = num_filters3, filter_length = filter_length3, border_mode = 'valid', activation = 'relu', subsample_length = stride_len3, init = 'uniform' ) ) modelL.add( Dropout( 0.30 ) ) modelR.add( Dropout( 0.30 ) ) modelL.add( MaxPooling1D( pool_length = 2 ) ) modelR.add( MaxPooling1D( pool_length = 2 ) ) modelL.add( Convolution1D( nb_filter = num_filters4, filter_length = filter_length4, border_mode = 'valid', activation = 'relu', subsample_length = stride_len4, init = 'uniform' ) ) modelR.add( Convolution1D( nb_filter = num_filters4, filter_length = filter_length4, border_mode = 'valid', activation = 'relu', subsample_length = stride_len4, init = 'uniform' ) ) modelL.add( Dropout( 0.25 ) ) modelR.add( Dropout( 0.25 ) ) modelL.add( MaxPooling1D( pool_length = pool_len4 ) ) modelR.add( MaxPooling1D( pool_length = pool_len4 ) ) # We flatten the output of the conv layer, # so that we can add a vanilla dense layer: modelL.add( Flatten( ) ) modelR.add( Flatten( ) ) # We add a vanilla hidden layer: modelL.add( Dense( hidden_dims ) ) modelL.add( Activation( 'relu' ) ) modelR.add( Dense( hidden_dims ) ) modelR.add( Activation( 'relu' ) ) merged_vector = merge([modelL, modelR], mode='concat', concat_axis=-1) Gw=Dense(1, activation=DistanceMetric)(merged_vector) model.compile( loss = contrastiveLoss, optimizer = 'rmsprop', )
def build_CNN_model(): print( 'Loading data...' ) ((X_train, y_train), (X_test, y_test)) = build_design_matrix( VocabSize, use_words = USEWORDS, skip_top = skipTop, dev_split = DEVSPLIT ) print( len( X_train ), 'train sequences' ) print( len( X_test ), 'test sequences' ) print( 'X_train shape:', X_train.shape ) print( 'X_test shape:', X_test.shape ) print( 'Build model...' ) model = Sequential( ) # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add( Embedding( VocabSize, embedding_dims, input_length = maxReviewLen ) ) model.add( Dropout( 0.10 ) ) ###init changed from uniform to glorot_norm model.add( Convolution1D( nb_filter = num_filters1, filter_length = filter_length1, border_mode = 'valid', activation = 'relu', subsample_length = stride_len1, init = 'uniform' ) ) # input_length=maxReviewLen, input_dim=VocabSize model.add( Dropout( 0.25 ) ) model.add( MaxPooling1D( pool_length = 2 ) ) model.add( Convolution1D( nb_filter = num_filters2, filter_length = filter_length2, border_mode = 'valid', activation = 'relu', subsample_length = stride_len2, init = 'uniform' ) ) model.add( Dropout( 0.40 ) ) # we use standard max pooling (halving the output of the previous layer): model.add( MaxPooling1D( pool_length = 2 ) ) model.add( Convolution1D( nb_filter = num_filters3, filter_length = filter_length3, border_mode = 'valid', activation = 'relu', subsample_length = stride_len3, init = 'uniform' ) ) model.add( Dropout( 0.30 ) ) model.add( MaxPooling1D( pool_length = 2 ) ) model.add( Convolution1D( nb_filter = num_filters4, filter_length = filter_length4, border_mode = 'valid', activation = 'relu', subsample_length = stride_len4, init = 'uniform' ) ) model.add( Dropout( 0.25 ) ) model.add( MaxPooling1D( pool_length = pool_len4 ) ) # We flatten the output of the conv layer, # so that we can add a vanilla dense layer: model.add( Flatten( ) ) # We add a vanilla hidden layer: model.add( Dense( hidden_dims ) ) model.add( Activation( 'relu' ) ) # We project onto a single unit output layer, and squash it with a sigmoid: model.add( Dense( 1 ) ) model.add( Activation( 'sigmoid' ) ) model.compile( loss = 'binary_crossentropy', optimizer = 'rmsprop', ) weightPath = './model_data/saved_weights/'+filename checkpoint = ModelCheckpoint( weightPath + '_W.{epoch:02d}-{val_loss:.2f}.hdf5', verbose = 1, ) earlyStop = EarlyStopping(patience = 1,verbose = 1) call_backs = [checkpoint,earlyStop] return (model,X_train,y_train,X_test,y_test)
num_filters3 = 300 filter_length3 = 4 stride_len3 = 1 pool_len3 = 2 embedding_dims = 200 hidden_dims = 100 num_epochs = 5 print('Loading data...') ((X_train, y_train), (X_test, y_test)) = build_design_matrix(VocabSize, use_words=USEWORDS, skip_top=skipTop, dev_split=DEVSPLIT) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(VocabSize, embedding_dims, input_length=maxReviewLen))
filter_length2 = 2 stride_len2 = 2 pool_len2 = 2 embedding_dims = 400 hidden_dims = 100 num_epochs = 3 DEVSPLIT = 14 USEWORDS = True print('Loading data...') ((X_train, y_train), (X_test, y_test)) = build_design_matrix(VocabSize, use_words=USEWORDS, skip_top=modelParameters.skip_top, dev_split=DEVSPLIT) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(VocabSize, embedding_dims, input_length=maxReviewLen)) model.add(Dropout(0.05))
def train_siamese_model(): print('Loading data...') ((X_train, y_train), (X_test, y_test)) = build_design_matrix(VocabSize, use_words=USEWORDS, skip_top=skipTop, dev_split=DEVSPLIT) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') #LEFT and RIGHT branches of siamese network modelL = Sequential() modelR = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions modelL.add(Embedding(VocabSize, embedding_dims, input_length=maxReviewLen)) modelR.add(Embedding(VocabSize, embedding_dims, input_length=maxReviewLen)) modelL.add(Dropout(0.10)) modelR.add(Dropout(0.10)) ###init changed from uniform to glorot_norm modelL.add( Convolution1D(nb_filter=num_filters1, filter_length=filter_length1, border_mode='valid', activation='relu', subsample_length=stride_len1, init='uniform')) modelR.add( Convolution1D(nb_filter=num_filters1, filter_length=filter_length1, border_mode='valid', activation='relu', subsample_length=stride_len1, init='uniform')) # input_length=maxReviewLen, input_dim=VocabSize modelL.add(Dropout(0.25)) modelR.add(Dropout(0.25)) modelL.add(MaxPooling1D(pool_length=2)) modelR.add(MaxPooling1D(pool_length=2)) modelL.add( Convolution1D(nb_filter=num_filters2, filter_length=filter_length2, border_mode='valid', activation='relu', subsample_length=stride_len2, init='uniform')) modelR.add( Convolution1D(nb_filter=num_filters2, filter_length=filter_length2, border_mode='valid', activation='relu', subsample_length=stride_len2, init='uniform')) modelL.add(Dropout(0.40)) modelR.add(Dropout(0.40)) # we use standard max pooling (halving the output of the previous layer): modelL.add(MaxPooling1D(pool_length=2)) modelR.add(MaxPooling1D(pool_length=2)) modelL.add( Convolution1D(nb_filter=num_filters3, filter_length=filter_length3, border_mode='valid', activation='relu', subsample_length=stride_len3, init='uniform')) modelR.add( Convolution1D(nb_filter=num_filters3, filter_length=filter_length3, border_mode='valid', activation='relu', subsample_length=stride_len3, init='uniform')) modelL.add(Dropout(0.30)) modelR.add(Dropout(0.30)) modelL.add(MaxPooling1D(pool_length=2)) modelR.add(MaxPooling1D(pool_length=2)) modelL.add( Convolution1D(nb_filter=num_filters4, filter_length=filter_length4, border_mode='valid', activation='relu', subsample_length=stride_len4, init='uniform')) modelR.add( Convolution1D(nb_filter=num_filters4, filter_length=filter_length4, border_mode='valid', activation='relu', subsample_length=stride_len4, init='uniform')) modelL.add(Dropout(0.25)) modelR.add(Dropout(0.25)) modelL.add(MaxPooling1D(pool_length=pool_len4)) modelR.add(MaxPooling1D(pool_length=pool_len4)) # We flatten the output of the conv layer, # so that we can add a vanilla dense layer: modelL.add(Flatten()) modelR.add(Flatten()) # We add a vanilla hidden layer: modelL.add(Dense(hidden_dims)) modelL.add(Activation('relu')) modelR.add(Dense(hidden_dims)) modelR.add(Activation('relu')) merged_vector = merge([modelL, modelR], mode='concat', concat_axis=-1) Gw = Dense(1, activation=DistanceMetric)(merged_vector) model.compile( loss=contrastiveLoss, optimizer='rmsprop', )