示例#1
0
 def build_model_tails(self, out_dim, out_layer_activation):
     '''Build each model_tail. These are stored as Sequential models in model_tails'''
     if not ps.is_list(out_layer_activation):
         out_layer_activation = [out_layer_activation] * len(out_dim)
     model_tails = nn.ModuleList()
     if ps.is_empty(self.tail_hid_layers):
         for out_d, out_activ in zip(out_dim, out_layer_activation):
             tail = net_util.build_fc_model(
                 [self.body_hid_layers[-1], out_d], out_activ)
             model_tails.append(tail)
     else:
         assert len(self.tail_hid_layers) == len(
             out_dim
         ), 'Hydra tail hid_params inconsistent with number out dims'
         for out_d, out_activ, hid_layers in zip(out_dim,
                                                 out_layer_activation,
                                                 self.tail_hid_layers):
             dims = hid_layers
             model_tail = net_util.build_fc_model(
                 dims, self.hid_layers_activation)
             tail_out = net_util.build_fc_model([dims[-1], out_d],
                                                out_activ)
             model_tail.add_module(str(len(model_tail)), tail_out)
             model_tails.append(model_tail)
     return model_tails
示例#2
0
    def __init__(self, net_spec, in_dim, out_dim):
        assert len(in_dim) == 3  # image shape (c,w,h)
        nn.Module.__init__(self)
        Net.__init__(self, net_spec, in_dim, out_dim)
        # set default
        util.set_attr(self, dict(
            init_fn=None,
            normalize=False,
            batch_norm=False,
            clip_grad_val=None,
            loss_spec={'name': 'MSELoss'},
            optim_spec={'name': 'Adam'},
            lr_scheduler_spec=None,
            update_type='replace',
            update_frequency=1,
            polyak_coef=0.0,
            gpu=False,
        ))
        util.set_attr(self, self.net_spec, [
            'conv_hid_layers',
            'fc_hid_layers',
            'hid_layers_activation',
            'init_fn',
            'normalize',
            'batch_norm',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])

        # Guard against inappropriate algorithms and environments
        assert isinstance(out_dim, int)

        # conv body
        self.conv_model = self.build_conv_layers(self.conv_hid_layers)
        self.conv_out_dim = self.get_conv_output_size()

        # fc body
        if ps.is_empty(self.fc_hid_layers):
            tail_in_dim = self.conv_out_dim
        else:
            # fc layer from flattened conv
            self.fc_model = net_util.build_fc_model([self.conv_out_dim] + self.fc_hid_layers,
                                                    self.hid_layers_activation)
            tail_in_dim = self.fc_hid_layers[-1]

        # tails. avoid list for single-tail for compute speed
        self.v = nn.Linear(tail_in_dim, 1)  # state value
        self.adv = nn.Linear(tail_in_dim, out_dim)  # action dependent raw advantage
        self.model_tails = nn.ModuleList(self.v, self.adv)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
示例#3
0
 def build_model_heads(self, in_dim):
     '''Build each model_head. These are stored as Sequential models in model_heads'''
     assert len(self.head_hid_layers) == len(in_dim), 'Hydra head hid_params inconsistent with number in dims'
     model_heads = nn.ModuleList()
     for in_d, hid_layers in zip(in_dim, self.head_hid_layers):
         dims = [in_d] + hid_layers
         model_head = net_util.build_fc_model(dims, self.hid_layers_activation)
         model_heads.append(model_head)
     return model_heads
示例#4
0
    def __init__(self, net_spec, in_dim, out_dim):
        nn.Module.__init__(self)
        Net.__init__(self, net_spec, in_dim, out_dim)
        # set default
        util.set_attr(
            self,
            dict(
                init_fn=None,
                clip_grad_val=None,
                loss_spec={'name': 'MSELoss'},
                optim_spec={'name': 'Adam'},
                lr_scheduler_spec=None,
                update_type='replace',
                update_frequency=1,
                polyak_coef=0.0,
                gpu=False,
            ))
        util.set_attr(self, self.net_spec, [
            'shared',
            'hid_layers',
            'hid_layers_activation',
            'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])

        # Guard against inappropriate algorithms and environments
        # Build model body
        dims = [self.in_dim] + self.hid_layers
        self.model_body = net_util.build_fc_model(dims,
                                                  self.hid_layers_activation)
        # output layers
        self.v = nn.Linear(dims[-1], 1)  # state value
        self.adv = nn.Linear(dims[-1],
                             out_dim)  # action dependent raw advantage
        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
示例#5
0
    def __init__(self, net_spec, in_dim, out_dim):
        '''
        net_spec:
        conv_hid_layers: list containing dimensions of the convolutional hidden layers, each is a list representing hid_layer = out_d, kernel, stride, padding, dilation.
            Asssumed to all come before the flat layers.
            Note: a convolutional layer should specify the in_channel, out_channels, kernel_size, stride (of kernel steps), padding, and dilation (spacing between kernel points) E.g. [3, 16, (5, 5), 1, 0, (2, 2)]
            For more details, see http://pytorch.org/docs/master/nn.html#conv2d and https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
        fc_hid_layers: list of fc layers following the convolutional layers
        hid_layers_activation: activation function for the hidden layers
        out_layer_activation: activation function for the output layer, same shape as out_dim
        init_fn: weight initialization function
        normalize: whether to divide by 255.0 to normalize image input
        batch_norm: whether to add batch normalization after each convolutional layer, excluding the input layer.
        clip_grad_val: clip gradient norm if value is not None
        loss_spec: measure of error between model predictions and correct outputs
        optim_spec: parameters for initializing the optimizer
        lr_scheduler_spec: Pytorch optim.lr_scheduler
        update_type: method to update network weights: 'replace' or 'polyak'
        update_frequency: how many total timesteps per update
        polyak_coef: ratio of polyak weight update
        gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing
        '''
        assert len(in_dim) == 3  # image shape (c,w,h)
        nn.Module.__init__(self)
        super().__init__(net_spec, in_dim, out_dim)
        # set default
        util.set_attr(
            self,
            dict(
                out_layer_activation=None,
                init_fn=None,
                normalize=False,
                batch_norm=True,
                clip_grad_val=None,
                loss_spec={'name': 'MSELoss'},
                optim_spec={'name': 'Adam'},
                lr_scheduler_spec=None,
                update_type='replace',
                update_frequency=1,
                polyak_coef=0.0,
                gpu=False,
            ))
        util.set_attr(self, self.net_spec, [
            'conv_hid_layers',
            'fc_hid_layers',
            'hid_layers_activation',
            'out_layer_activation',
            'init_fn',
            'normalize',
            'batch_norm',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])

        # conv body
        self.conv_model = self.build_conv_layers(self.conv_hid_layers)
        self.conv_out_dim = self.get_conv_output_size()

        # fc body
        if ps.is_empty(self.fc_hid_layers):
            tail_in_dim = self.conv_out_dim
        else:
            # fc body from flattened conv
            self.fc_model = net_util.build_fc_model([self.conv_out_dim] +
                                                    self.fc_hid_layers,
                                                    self.hid_layers_activation)
            tail_in_dim = self.fc_hid_layers[-1]

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model(
                [tail_in_dim, self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation
                                             ] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim,
                                        self.out_layer_activation):
                tail = net_util.build_fc_model([tail_in_dim, out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
示例#6
0
    def __init__(self, net_spec, in_dim, out_dim):
        '''
        net_spec:
        hid_layers: list containing dimensions of the hidden layers
        hid_layers_activation: activation function for the hidden layers
        out_layer_activation: activation function for the output layer, same shape as out_dim
        init_fn: weight initialization function
        clip_grad_val: clip gradient norm if value is not None
        loss_spec: measure of error between model predictions and correct outputs
        optim_spec: parameters for initializing the optimizer
        lr_scheduler_spec: Pytorch optim.lr_scheduler
        update_type: method to update network weights: 'replace' or 'polyak'
        update_frequency: how many total timesteps per update
        polyak_coef: ratio of polyak weight update
        gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing
        '''
        nn.Module.__init__(self)
        super().__init__(net_spec, in_dim, out_dim)
        # set default
        util.set_attr(
            self,
            dict(
                out_layer_activation=None,
                init_fn=None,
                clip_grad_val=None,
                loss_spec={'name': 'MSELoss'},
                optim_spec={'name': 'Adam'},
                lr_scheduler_spec=None,
                update_type='replace',
                update_frequency=1,
                polyak_coef=0.0,
                gpu=False,
            ))
        util.set_attr(self, self.net_spec, [
            'shared',
            'hid_layers',
            'hid_layers_activation',
            'out_layer_activation',
            'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])

        dims = [self.in_dim] + self.hid_layers
        self.model = net_util.build_fc_model(dims, self.hid_layers_activation)
        # add last layer with no activation
        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model(
                [dims[-1], self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation
                                             ] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim,
                                        self.out_layer_activation):
                tail = net_util.build_fc_model([dims[-1], out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
示例#7
0
    def __init__(self, net_spec, in_dim, out_dim):
        '''
        Multi state processing heads, single shared body, and multi action tails.
        There is one state and action head per body/environment
        Example:

          env 1 state       env 2 state
         _______|______    _______|______
        |    head 1    |  |    head 2    |
        |______________|  |______________|
                |                  |
                |__________________|
         ________________|_______________
        |          Shared body           |
        |________________________________|
                         |
                 ________|_______
                |                |
         _______|______    ______|_______
        |    tail 1    |  |    tail 2    |
        |______________|  |______________|
                |                |
           env 1 action      env 2 action
        '''
        nn.Module.__init__(self)
        super().__init__(net_spec, in_dim, out_dim)
        # set default
        util.set_attr(
            self,
            dict(
                out_layer_activation=None,
                init_fn=None,
                clip_grad_val=None,
                loss_spec={'name': 'MSELoss'},
                optim_spec={'name': 'Adam'},
                lr_scheduler_spec=None,
                update_type='replace',
                update_frequency=1,
                polyak_coef=0.0,
                gpu=False,
            ))
        util.set_attr(self, self.net_spec, [
            'hid_layers',
            'hid_layers_activation',
            'out_layer_activation',
            'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])
        assert len(
            self.hid_layers
        ) == 3, 'Your hidden layers must specify [*heads], [body], [*tails]. If not, use MLPNet'
        assert isinstance(self.in_dim,
                          list), 'Hydra network needs in_dim as list'
        assert isinstance(self.out_dim,
                          list), 'Hydra network needs out_dim as list'
        self.head_hid_layers = self.hid_layers[0]
        self.body_hid_layers = self.hid_layers[1]
        self.tail_hid_layers = self.hid_layers[2]
        if len(self.head_hid_layers) == 1:
            self.head_hid_layers = self.head_hid_layers * len(self.in_dim)
        if len(self.tail_hid_layers) == 1:
            self.tail_hid_layers = self.tail_hid_layers * len(self.out_dim)

        self.model_heads = self.build_model_heads(in_dim)
        heads_out_dim = np.sum(
            [head_hid_layers[-1] for head_hid_layers in self.head_hid_layers])
        dims = [heads_out_dim] + self.body_hid_layers
        self.model_body = net_util.build_fc_model(dims,
                                                  self.hid_layers_activation)
        self.model_tails = self.build_model_tails(self.out_dim,
                                                  self.out_layer_activation)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
    def __init__(self, net_spec, in_dim, out_dim):
        '''
        net_spec:
        cell_type: any of RNN, LSTM, GRU
        fc_hid_layers: list of fc layers preceeding the RNN layers
        hid_layers_activation: activation function for the fc hidden layers
        out_layer_activation: activation function for the output layer, same shape as out_dim
        rnn_hidden_size: rnn hidden_size
        rnn_num_layers: number of recurrent layers
        bidirectional: if RNN should be bidirectional
        seq_len: length of the history of being passed to the net
        init_fn: weight initialization function
        clip_grad_val: clip gradient norm if value is not None
        loss_spec: measure of error between model predictions and correct outputs
        optim_spec: parameters for initializing the optimizer
        lr_scheduler_spec: Pytorch optim.lr_scheduler
        update_type: method to update network weights: 'replace' or 'polyak'
        update_frequency: how many total timesteps per update
        polyak_coef: ratio of polyak weight update
        gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing
        '''
        nn.Module.__init__(self)
        super().__init__(net_spec, in_dim, out_dim)
        # set default
        util.set_attr(
            self,
            dict(
                out_layer_activation=None,
                cell_type='GRU',
                rnn_num_layers=1,
                bidirectional=False,
                init_fn=None,
                clip_grad_val=None,
                loss_spec={'name': 'MSELoss'},
                optim_spec={'name': 'Adam'},
                lr_scheduler_spec=None,
                update_type='replace',
                update_frequency=1,
                polyak_coef=0.0,
                gpu=False,
            ))
        util.set_attr(self, self.net_spec, [
            'cell_type',
            'fc_hid_layers',
            'hid_layers_activation',
            'out_layer_activation',
            'rnn_hidden_size',
            'rnn_num_layers',
            'bidirectional',
            'seq_len',
            'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])
        # restore proper in_dim from env stacked state_dim (stack_len, *raw_state_dim)
        self.in_dim = in_dim[1:] if len(in_dim) > 2 else in_dim[1]
        # fc body: state processing model
        if ps.is_empty(self.fc_hid_layers):
            self.rnn_input_dim = self.in_dim
        else:
            fc_dims = [self.in_dim] + self.fc_hid_layers
            self.fc_model = net_util.build_fc_model(fc_dims,
                                                    self.hid_layers_activation)
            self.rnn_input_dim = fc_dims[-1]

        # RNN model
        self.rnn_model = getattr(nn, net_util.get_nn_name(self.cell_type))(
            input_size=self.rnn_input_dim,
            hidden_size=self.rnn_hidden_size,
            num_layers=self.rnn_num_layers,
            batch_first=True,
            bidirectional=self.bidirectional)

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model(
                [self.rnn_hidden_size, self.out_dim],
                self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation
                                             ] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim,
                                        self.out_layer_activation):
                tail = net_util.build_fc_model([self.rnn_hidden_size, out_d],
                                               out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()