def __init__(self): self.dst = RuleDST() self.nlu = OneNetLU( archive_file='models/onenet.tar.gz', cuda_device=-1, model_file= 'https://convlab.blob.core.windows.net/models/onenet.tar.gz')
class NLU_DST: def __init__(self): self.dst = RuleDST() self.nlu = OneNetLU( archive_file='models/onenet.tar.gz', cuda_device=-1, model_file= 'https://convlab.blob.core.windows.net/models/onenet.tar.gz') def update(self, action, observation): # update history self.dst.state['history'].append([str(action)]) # NLU parsing input_act = self.nlu.parse(observation, sum(self.dst.state['history'], [])) if self.nlu else observation # state tracking self.dst.update(input_act) # update history self.dst.state['history'][-1].append(str(observation)) return self.dst.state def reset(self): self.dst.init_session() self.dst.state['history'].append(['null'])
from convlab.modules.nlu.multiwoz.onenet.nlu import OneNetLU input1 = input("Enter your name: ") #There is a movie at 10:15 on wednesday . print(input1) oneNetLU = OneNetLU( model_file='https://convlab.blob.core.windows.net/models/onenet.tar.gz') print(oneNetLU.parse(input1))
from convlab.modules.nlu.multiwoz.onenet.nlu import OneNetLU from convlab.modules.nlu.multiwoz.milu.nlu import MILU oneNetLU = OneNetLU(model_file='https://convlab.blob.core.windows.net/models/onenet.tar.gz') miLU = MILU(model_file='https://convlab.blob.core.windows.net/models/milu.tar.gz') print(oneNetLU.parse('I want Indian food at 10:15 on wednesday .')) print(miLU.parse('There is a train leaving at 10:15 on wednesday .'))