def predict(self, utterance, context=list()): # ori_word_seq = unidecode(utterance).split() ori_word_seq = [token.text for token in self.nlp(unidecode(utterance)) if token.text.strip()] ori_tag_seq = ['O'] * len(ori_word_seq) if self.use_context: if len(context) > 0 and type(context[0]) is list and len(context[0]) > 1: context = [item[1] for item in context] context_seq = self.dataloader.tokenizer.encode('[CLS] ' + ' [SEP] '.join(context[-3:])) context_seq = context_seq[:512] else: context_seq = self.dataloader.tokenizer.encode('[CLS]') intents = [] da = {} word_seq, tag_seq, new2ori = self.dataloader.bert_tokenize(ori_word_seq, ori_tag_seq) word_seq = word_seq[:512] tag_seq = tag_seq[:512] batch_data = [[ori_word_seq, ori_tag_seq, intents, da, context_seq, new2ori, word_seq, self.dataloader.seq_tag2id(tag_seq), self.dataloader.seq_intent2id(intents)]] pad_batch = self.dataloader.pad_batch(batch_data) pad_batch = tuple(t.to(self.model.device) for t in pad_batch) word_seq_tensor, tag_seq_tensor, intent_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor = pad_batch slot_logits, intent_logits = self.model.forward(word_seq_tensor, word_mask_tensor, context_seq_tensor=context_seq_tensor, context_mask_tensor=context_mask_tensor) das = recover_intent(self.dataloader, intent_logits[0], slot_logits[0], tag_mask_tensor[0], batch_data[0][0], batch_data[0][-4]) dialog_act = [] for intent, slot, value in das: domain, intent = intent.split('-') dialog_act.append([intent, domain, slot, value]) return dialog_act
batch_size, data_key=data_key): pad_batch = tuple(t.to(DEVICE) for t in pad_batch) word_seq_tensor, tag_seq_tensor, intent_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor = pad_batch if not config['model']['context']: context_seq_tensor, context_mask_tensor = None, None with torch.no_grad(): slot_logits, intent_logits, batch_slot_loss, batch_intent_loss = model.forward( word_seq_tensor, word_mask_tensor, tag_seq_tensor, tag_mask_tensor, intent_tensor, context_seq_tensor, context_mask_tensor) slot_loss += batch_slot_loss.item() * real_batch_size intent_loss += batch_intent_loss.item() * real_batch_size for j in range(real_batch_size): predicts = recover_intent(dataloader, intent_logits[j], slot_logits[j], tag_mask_tensor[j], ori_batch[j][0], ori_batch[j][-4]) labels = ori_batch[j][3] predict_golden['overall'].append({ 'predict': predicts, 'golden': labels }) predict_golden['slot'].append({ 'predict': [x for x in predicts if is_slot_da(x)], 'golden': [x for x in labels if is_slot_da(x)] }) predict_golden['intent'].append({ 'predict': [x for x in predicts if not is_slot_da(x)], 'golden': [x for x in labels if not is_slot_da(x)] })