示例#1
0
    def __init__(self,
                 input_size: Tuple[int, int],
                 input_dim: int,
                 hidden_dim: List[int],
                 kernel_size: List[Tuple[int, int]],
                 batch_first: bool = True,
                 bias: bool = True,
                 decoding_steps: int = -1):
        super(ConvLSTMAutoencoder, self).__init__()
        self.decoding_steps = decoding_steps
        self.input_size = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.kernel_size = kernel_size
        self.batch_first = batch_first
        self.num_layers = len(hidden_dim)

        self.encoder = ConvLSTM(input_size=input_size,
                                input_dim=input_dim,
                                hidden_dim=hidden_dim,
                                kernel_size=kernel_size,
                                num_layers=self.num_layers,
                                batch_first=False,
                                bias=bias,
                                mode=ConvLSTM.SEQUENCE)

        # reverse the order of hidden dimensions and kernels
        decoding_hidden_dim = list(reversed(hidden_dim))
        decoding_kernel_size = list(reversed(kernel_size))
        decoding_hidden_dim.append(
            input_dim
        )  # NOTE: we need a num_of_decoding_layers = num_of_encoding_layers+1
        decoding_kernel_size.append(
            (1, 1))  #       so we add a 1x1 ConvLSTM as last decoding layer

        self.input_reconstruction = ConvLSTM(input_size=input_size,
                                             input_dim=input_dim,
                                             hidden_dim=decoding_hidden_dim,
                                             kernel_size=decoding_kernel_size,
                                             num_layers=self.num_layers + 1,
                                             batch_first=False,
                                             bias=bias,
                                             mode=ConvLSTM.STEP_BY_STEP)
        self.future_prediction = ConvLSTM(input_size=input_size,
                                          input_dim=input_dim,
                                          hidden_dim=decoding_hidden_dim,
                                          kernel_size=decoding_kernel_size,
                                          num_layers=self.num_layers + 1,
                                          batch_first=False,
                                          bias=bias,
                                          mode=ConvLSTM.STEP_BY_STEP)
示例#2
0
    def __init__(self,pretrainedModel):
        super(PolygonRNN, self).__init__()
        self.VGG = TruncatedVGG(pretrainedModel)

        #First VGG block 56 x 56 x 128
        self.mp1 = nn.MaxPool2d(2,2) #28 x 28 x 128
        self.conv1 = nn.Conv2d(128, 128, kernel_size=3,stride=1,padding=1) #28 x 28 x 128

        #Second VGG block 28 x 28 x 256
        self.conv2 = nn.Conv2d(256, 128, kernel_size=3,stride=1,padding=1) #28 x 28 x 128

        #Third VGG block 28 x 28 x 512
        self.conv3 = nn.Conv2d(512, 128, kernel_size=3,stride=1,padding=1) #28 x 28 x 128

        #Fourth VGG block 14 x 14 x 512
        self.conv4 = nn.Conv2d(512, 128, kernel_size=3,stride=1,padding=1) #14 x 14 x 128
        self.up4 = nn.Upsample(scale_factor=2, mode='bilinear') # 28 x 28 x 128

        #Fused VGG BLock 28 x 28 x 512
        self.convFused = nn.Conv2d(512, 128, kernel_size=3,stride=1,padding=1) # 28 x 28 x 128

        self.ConvLSTM = ConvLSTM(input_size=(28,28),
                                input_dim=128,
                                hidden_dim=[16,1],
                                kernel_size=(3,3),
                                num_layers=2,
                                bias=True,
                                batch_first=True)
示例#3
0
 def __init__(self, args):
     super().__init__()
     self.args = args
     self.lstm = ConvLSTM(input_size=(args.image_size // 32,
                                      args.image_size // 32),
                          kernel_size=(3, 3),
                          input_dim=args.nfeatures,
                          hidden_dim=args.nfeatures // 4,
                          num_layers=2,
                          batch_first=True,
                          return_all_layers=False)
     self.fc = nn.Linear(args.nfeatures // 4, args.nclasses)
示例#4
0
    def __init__(self):
        super(sequence_to_one, self).__init__()
        self.model = ConvLSTM(input_size=(32, 32),
                              input_dim=3,
                              hidden_dim=[64, 64, 128],
                              kernel_size=(3, 3),
                              num_layers=3,
                              batch_first=True,
                              bias=True,
                              return_all_layers=False)

        self.fc1 = nn.Linear(128*32*32, 1024).cuda()
        self.fc2 = nn.Linear(1024, 1).cuda()
示例#5
0
    def _decode(decoder: ConvLSTM, last_frame: Tensor,
                representation: HiddenState, steps: int) -> Tensor:
        decoded_sequence = []

        h_n, c_n = representation
        h_0, c_0 = decoder.init_hidden(last_frame.size(0))
        h_0[0], c_0[0] = h_n, c_n

        state = (h_0, c_0)
        output = last_frame
        for t in range(steps):
            output, state = decoder(output, state)
            decoded_sequence.append(output)

        return torch.stack(decoded_sequence, dim=0)
示例#6
0
 def __init__(self, num_classes):
     super(ConvLstmNet, self).__init__()
     self.features = ConvLSTM(input_dim=3,
                              hidden_dim=[16],
                              kernel_size=(3, 3),
                              num_layers=1,
                              batch_first=True,
                              bias=True,
                              return_all_layers=False)
     self.avgpool = nn.AdaptiveAvgPool2d((3, 3))
     self.classifier = nn.Sequential(
         nn.Dropout(),
         nn.Linear(16 * 3 * 3, 128),
         nn.ReLU(inplace=True),
         nn.Linear(128, num_classes),
     )
示例#7
0
    def __init__(self):
        super().__init__()

        self.enc_1 = Vgg()
        self.conv_lstm = ConvLSTM(128,
                                  128, (3, 3),
                                  1,
                                  batch_first=True,
                                  return_all_layers=True)
        self.conv_1 = nn.Conv2d(128, 128, (7, 7))
        self.conv_2 = nn.Conv2d(128, 128, (7, 7))
        self.de_cell1 = nn.LSTMCell(128, 128)
        # self.de_cell2 = nn.LSTMCell(128, 128)
        self.fc_in_lstm = nn.Linear(35, 128)
        self.fc_os = nn.Linear(128, 35)
        self.fc_r = nn.Linear(128, 82)
        self.attention = torch.nn.MultiheadAttention(128, 1)
示例#8
0
文件: har.py 项目: ropok/skripsi-har
def main(train_dataset=None, validation_dataset=None, test_dataset=None, epoch=30, batch_size=128,
         logdir=None, run=1, variation=1, checkpoint=None):
    """HAR Model Trainer

    Train the `ConvLSTM` model with several `variation` of `ConvLSTMHyperparameter`. The model is
    trained with dataset from `train_dataset`, validated with dataset from `validation_dataset` and
    tested with dataset from `test_dataset`.

    Training summary and checkpoints is saved to `logdir`. A log directory is created for each
    variation, started from number provided to `run`.

    To restore a checkpoint before training or testing, provide the path to `checkpoint`.

    Args:
        - `train_dataset`:      path to train dataset
        - `validation_dataset`: path to validation dataset
        - `test_dataset`:       path to test dataset
        - `epoch`:          number of epoch to train
        - `batch_size`:     mini batch size used for training
        - `logdir`:         path to save checkpoint and summary
        - `run`:            number of run for the first variation, used for log directory naming
        - `variation`:      number of hyperparameter variation
        - `checkpoint`:     checkpoint path to restore

    """
    hyperparameters = convlstm_hyperparamter(variation)
    for i, hyperparameter in enumerate(hyperparameters):
        run_logdir = os.path.join(logdir, 'run' + str(i + run))
        model = ConvLSTM(hyperparameter, run_logdir)
        print('Run %d/%d' % (i + 1, variation))
        print_hyperparameter_notes(hyperparameter)
        write_hyperparameter_notes(hyperparameter, run_logdir)

        if train_dataset and validation_dataset:
            train_data = load(train_dataset, NUM_TARGET, WINDOW_SIZE)
            validation_data = load(validation_dataset, NUM_TARGET, WINDOW_SIZE)

            if train_data.data.any() and validation_data.data.any():
                model.train(train_data, validation_data, epoch, batch_size, checkpoint)

        if test_dataset:
            test_data = load(test_dataset, NUM_TARGET, WINDOW_SIZE)

            if test_data.data.any():
                prediction = model.test(test_data, batch_size, checkpoint)
                model.confusion_matrix(prediction, test_data.target)

        tf.reset_default_graph()
示例#9
0
    def __init__(self, opt):
        super(ConvLSTMAE, self).__init__()

        #
        self.opt = opt  # 配置参数
        #
        self.Conv3 = nn.Sequential(
            # TODO:图片的channel不是1,但是作者网络设置是1,有冲突?
            nn.Conv2d(self.opt.channel, 128, 7, 4, 3),
            nn.ReLU(),
            nn.Conv2d(128, 256, 5, 2, 2),
            nn.ReLU(),
            nn.Conv2d(256, 512, 3, 2, 1),
            nn.ReLU(),
        )
        # 下面的ConvLSTM和本论文作者的code有一些差异,等最后再调节这个!
        height, width = 15, 15  # TODO 每次都要根据Conv3输出的x的w,h来设置
        self.ConvLSTM = ConvLSTM(
            input_size=(height, width),  # Conv3后tensor的w,h
            input_dim=512,  # Conv3后tensor的channel
            hidden_dim=[64, 64, 128],
            kernel_size=(3, 3),
            num_layers=3,
            batch_first=True,
            bias=False,  # 作者论文
            return_all_layers=False  # 只返回最后一层
        )
        self.Deconv3_1 = nn.Sequential(
            nn.ConvTranspose2d(128, 256, 3, 2,
                               1),  # TODO input_channel根据ConvLSTM的output改
            nn.ReLU(),
            nn.ConvTranspose2d(256, 128, 5, 2, 2),
            nn.ReLU(),
            nn.ConvTranspose2d(128, self.opt.channel, 7, 4, 3),
            nn.Tanh(),
        )
        self.Deconv3_2 = nn.Sequential(
            nn.ConvTranspose2d(128, 256, 3, 2,
                               1),  # TODO input_channel根据ConvLSTM的output改
            nn.ReLU(),
            nn.ConvTranspose2d(256, 128, 5, 2, 2),
            nn.ReLU(),
            nn.ConvTranspose2d(128, self.opt.channel, 7, 4, 3),
            nn.Tanh(),
        )
示例#10
0
    def __init__(self):
        super(Net05, self).__init__()

        #self.conv1 = ConvLSTM(input_channels=1, hidden_channels=[64, 32, 32], kernel_size=3, step=5,
        #           effective_step=[4]).cuda()

        self.maxpool = nn.MaxPool3d((1, 5, 5), stride=(1, 3, 3))
        self.BD = nn.BatchNorm2d(16)
        self.drop = nn.Dropout(p=0.3)
        self.conv1 = ConvLSTM(input_size=(74, 74),
                              input_dim=3,
                              hidden_dim=[64, 32, 16],
                              kernel_size=(3, 3),
                              num_layers=3,
                              batch_first=True)
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=2)
        self.fc1 = nn.Linear(5 * 16 * 9 * 9, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)
    def __init__(self):
        super(CNNLSTM, self).__init__()

        self.input_size = input_size 
        self.input_dim = input_dim
        self.hidden_dim = [lstm_channel for _ in range(frame_num)]
        self.num_layers = frame_num

        self.down_sample = DownSample(down_in_dim, down_out_dim)

        self.convlstm = ConvLSTM(
            input_size=self.input_size,
            input_dim=self.input_dim,
            hidden_dim=self.hidden_dim,
            kernel_size=(3, 3),
            num_layers=self.num_layers,
            batch_first=True, 
            bias=True,
            return_all_layers=False
        )

        self.up_sample = UpSample(up_in_dim, up_out_dim)
示例#12
0
def main():
    model_name = "convlstm"
    system = "ccw" # ccw, gf
    system_dir = {"ccw":"concentric_circle_wave", "gf":"global_flow"}
    result_dir = os.path.join("results", system_dir[system], "convlstm")
    config = configparser.ConfigParser()
    config.read("config_{}.ini".format(system))

    if not os.path.exists(result_dir):
        os.mkdir(result_dir)
    # shutil.copy("config_{}.ini".format(system), result_dir)
    
    
    ## Set seed and cuda
    seed = 128
    print("Set seed {}.".format(seed))
    
    cuda = torch.cuda.is_available()
    gpu = int(config.get("train", "gpu"))
    if cuda:
        print("cuda is available")
        device = torch.device('cuda', gpu)
    else:
        print("cuda is not available")
        device = torch.device('cpu')
    torch.manual_seed(seed)
    if cuda:
        torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    
    # cuda = False
    # device = torch.device('cpu')
    # np.random.seed(seed)
    # torch.autograd.set_detect_anomaly(True)
    
    
    ## Read data and set parameters
    train_data = np.load(config.get("data", "path")).astype(np.float32) # T x h x w
    true_data = np.load(config.get("data", "true_path")).astype(np.float32)
        
    timesteps = int(config.get("data", "timesteps"))
    width = int(config.get("data", "width"))
    height = int(config.get("data", "height"))
    
    loss_name = config.get("network", "loss")
    #n_layers = int(config.get("network", "n_layers"))
    step = int(config.get("network", "step"))
    effective_step = [int(i) for i in config.get("network", "effective_step").split(",")]
    input_channels = int(config.get("network", "input_channels"))
    kernel_size = tuple([int(i) for i in config.get("network", "kernel_size").split(",")])
    n_channels = [int(i) for i in config.get("network", "n_channels").split(",")]
    n_layers = len(n_channels)
    batch_norm = bool(config.get("network", "batch_norm"))
    effective_layers = [int(i) for i in config.get("network", "effective_layers").split(",")]
    
    num_epochs = int(config.get("train", "num_epochs"))
    batch_size = int(config.get("train", "batch_size"))
    optimizer_name = config.get("train", "optimizer")
    init_lr = float(config.get("train", "init_lr"))
    decay_rate = float(config.get("train", "decay_rate"))
    decay_steps = float(config.get("train", "decay_steps"))
    train_steps = int(config.get("train", "train_steps"))
    test_steps = int(config.get("train", "test_steps"))
    prediction_steps = int(config.get("train", "prediction_steps"))
    
    display_steps = int(config.get("logs", "display_steps"))
    save_steps = int(config.get("logs", "save_steps"))

    
    ## Read model
    model = ConvLSTM((height, width), input_channels, n_channels, kernel_size, n_layers, effective_layers, batch_norm, device=device).to(device)
    if loss_name == "MSE":
        loss_fn = nn.MSELoss()
    elif loss_name == "CE":
        loss_fn = nn.CrossEntropyLoss()

    if cuda:
        cudnn.benchmark = True
    if optimizer_name == "Adam":
        optimizer = torch.optim.Adam(model.parameters(), lr=init_lr)
    elif optimizer_name == "RMSprop":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=init_lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=decay_steps, gamma=decay_rate)
    
    
    # Define functions
    def train(epoch):
        model.train()
        epoch_loss = 0
        
        data = Variable(torch.from_numpy(train_data[:train_steps-1])).unsqueeze(1).unsqueeze(1).to(device) # T x bs(=1) x c(=1) x h x w
        # forward + backward + optimize
        optimizer.zero_grad()
        outputs, _ = model(data)
        loss = loss_fn(outputs.squeeze(), torch.from_numpy(train_data[1:train_steps]).to(device))
        loss.backward()
        optimizer.step()
        epoch_loss = loss.item()
                
        if epoch%display_steps==0:
            print_contents = "Train Epoch: [{}/{}]".format(epoch, num_epochs)
            print_contents += "\t {}: {:.6f}".format(
                                loss_name,
                                epoch_loss)
            print(print_contents)
        return epoch_loss
    
    
    def test(epoch):
        """uses test data to evaluate likelihood of the model"""
        model.eval()
        epoch_loss = 0

        data = Variable(torch.from_numpy(train_data[train_steps:train_steps+test_steps-1])).unsqueeze(1).unsqueeze(1).to(device) # T x bs(=1) x c(=1) x w x h
        # forward + backward + optimize
        optimizer.zero_grad()
        outputs, _ = model(data)
        loss = loss_fn(outputs.squeeze(), torch.from_numpy(train_data[train_steps+1:train_steps+test_steps]).to(device))
        loss.backward()
        optimizer.step()
        epoch_loss = loss.item()
            
        if epoch%display_steps==0:
            print_contents = "====> Test set loss:"
            print_contents += " {} = {:.4f}".format(loss_name,
                                                    epoch_loss)
            print(print_contents)
        return epoch_loss
        
    
    def prediction(epoch):
        """n-step prediction"""
        model.eval()
        loss = np.zeros((2, prediction_steps))
        output = np.zeros((prediction_steps, train_data.shape[1], train_data.shape[2]))
        
        data = Variable(torch.from_numpy(train_data[:train_steps-1].squeeze()))
        data = data.unsqueeze(1).unsqueeze(1).to(device) # T x bs(=1) x c(=1) x h x w
        outputs, last_state_list = model(data)
        #prev_state = outputs[-1].view(1,1,1,height,width) # T(=1) x bs(=1) x c(=1) x h x w
        prev_state = Variable(torch.from_numpy(train_data[train_steps])).unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device)
        
        for i in range(prediction_steps):
            prev_state, last_state_list = model(prev_state, last_state_list)
            loss[0,i] = mean_squared_error(prev_state.squeeze().cpu().detach().numpy(), train_data[train_steps+i])
            loss[1,i] = mean_squared_error(prev_state.squeeze().cpu().detach().numpy(), true_data[train_steps+i])
            output[i] = prev_state.squeeze().cpu().detach().numpy()
        
        if epoch%display_steps==0:
            print_contents = "===> Prediction loss:\n"
            for i in range(prediction_steps):
                print_contents += "{} step forecast {}: {}\n".format(i+1, loss_name, loss[0,i])
            print(print_contents)
        
        #print("output", output.shape, output.min(), output.max())
        return loss, output
        
    
    ## Train model
    def execute():
        train_loss = np.zeros(num_epochs)
        test_loss = np.zeros(num_epochs)
        prediction_loss = np.zeros((num_epochs, 2, prediction_steps))
        outputs = np.zeros((num_epochs//save_steps, prediction_steps, train_data.shape[1], train_data.shape[2]))
        start_time = time.time()

        for epoch in range(1, num_epochs + 1):
            # training + testing
            _train_loss = train(epoch)
            _test_loss = test(epoch)
            _prediction_loss = prediction(epoch)
            scheduler.step()

            # substitute losses for array
            train_loss[epoch-1] = _train_loss
            test_loss[epoch-1] = _test_loss
            prediction_loss[epoch-1], outputs[(epoch-1)//save_steps] = _prediction_loss

            # duration
            duration = int(time.time() - start_time)
            second = int(duration%60)
            remain = int(duration//60)
            minute = int(remain%60)
            hour = int(remain//60)
            print("Duration: {} hour, {} min, {} sec.".format(hour, minute, second))
            remain = (num_epochs - epoch) * duration / epoch
            second = int(remain%60)
            remain = int(remain//60)
            minute = int(remain%60)
            hour = int(remain//60)
            print("Estimated Remain Time: {} hour, {} min, {} sec.".format(hour, 
                                                                           minute, 
                                                                           second))

            # saving model
            if epoch % save_steps == 0:
                torch.save(model.state_dict(), os.path.join(result_dir, 
                                        'state_dict_'+str(epoch)+'.pth'))
                torch.save(optimizer.state_dict(), os.path.join(result_dir,
                                        'adam_state_dict_'+str(epoch)+'.pth'))
                print('Saved model to state_dict_'+str(epoch)+'.pth')
                # np.save(os.path.join(result_dir, "train_loss.npy"), train_loss)
                # np.save(os.path.join(result_dir, "test_loss.npy"), test_loss)
                np.save(os.path.join(result_dir, "prediction_loss.npy"), prediction_loss)
                np.save(os.path.join(result_dir, "convlstm_mse.npy"), prediction_loss[:,1])
                # np.save(os.path.join(result_dir, "prediction.npy"), outputs)

                # plot loss for train and test
                fig, ax = plt.subplots(1, 1, figsize=(5, 5))
                ax.plot(range(epoch), train_loss[:epoch],
                              label="train")
                ax.plot(range(epoch), test_loss[:epoch],
                              label="test")
                ax.set_xlabel("epoch")
                ax.set_ylabel(loss_name)
                ax.legend()
                fig.savefig(os.path.join(result_dir, "loss.png"), 
                            bbox_inches="tight")
                ax.set_yscale("log")
                fig.savefig(os.path.join(result_dir, "log_loss.png"), 
                            bbox_inches="tight")
                
                # plot prediction loss
                fig, ax = plt.subplots(1, 1, figsize=(5, 5))
                for i in range(save_steps, epoch+1, save_steps):
                    ax.plot(range(train_steps, train_steps+prediction_steps), prediction_loss[i-1,0,:],
                                          label="epoch={}".format(i))
                ax.set_xlabel("timestep")
                ax.set_ylabel(loss_name)
                ax.legend()
                fig.savefig(os.path.join(result_dir, "prediction_loss.png"), 
                            bbox_inches="tight")
                ax.set_yscale("log")
                fig.savefig(os.path.join(result_dir, "log_prediction_loss.png"), 
                            bbox_inches="tight")
                
    
    
    ## Excute
    # measure for culabas rutine error
    execute()
seq_size = 16

transform = transforms.Compose([RandomNoiseWithGT(), transforms.ToTensor()])

raw_data = dset.MNIST("../autoencoderMNIST/MNIST",
                      download=True,
                      transform=transform)
dloader = torch.utils.data.DataLoader(raw_data,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      drop_last=True)

encoder = ConvLSTM(
    input_size=(7, 7),
    input_dim=1,
    hidden_dim=[8, 16, 32, 64],
    kernel_size=(3, 3),
    num_layers=3,
)

decoder = ConvLSTM(
    input_size=(7, 7),
    input_dim=64,
    hidden_dim=[32, 16, 8, 1],
    kernel_size=(3, 3),
    num_layers=3,
)

encoder.cuda()
decoder.cuda()
示例#14
0
b_size = 128

transform = transforms.Compose([transforms.ToTensor()])

raw_data = dset.MNIST("../autoencoderMNIST/MNIST",
                      download=False,
                      transform=transform)
dloader = torch.utils.data.DataLoader(raw_data,
                                      batch_size=b_size,
                                      shuffle=True,
                                      drop_last=True)

encoder = ConvLSTM(
    input_size=(28, 28),
    input_dim=1,
    hidden_dim=[2, 1],
    kernel_size=(3, 3),
    num_layers=2,
)

decoder = ConvLSTM(
    input_size=(28, 28),
    input_dim=1,
    hidden_dim=[2, 1],
    kernel_size=(3, 3),
    num_layers=2,
)

encoder.cuda()
decoder.cuda()
示例#15
0
                            transforms_=transforms_)

#train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
train_loader = DataLoader(train_dataset,
                          batch_size=opt.batch_size,
                          shuffle=True,
                          num_workers=opt.n_cpu)
test_loader = DataLoader(test_dataset,
                         batch_size=opt.batch_size,
                         shuffle=False,
                         num_workers=opt.n_cpu)

model = ConvLSTM(opt.in_channels,
                 2 * opt.in_channels,
                 opt.kernel_size,
                 opt.num_layers,
                 batch_first=False,
                 bias=True,
                 return_all_layers=False)
#model = PredictorLSTM(opt.input_size, opt.hidden_size, opt.num_layers, opt.out_size)  # 27 *8
use_gpu = True if torch.cuda.is_available() else False
if use_gpu:
    model = model.cuda()

criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                                 milestones=opt.milestones,
                                                 gamma=0.5)

header = ['epoch/total_epoch', 'test_mse']
示例#16
0
word_to_ix = {"hello": 0, "world": 1}
#embeds = nn.Embedding(2, 5)  # 2 words in vocab, 5 dimensional embeddings
embeds = nn.Embedding(2,
                      feat_dim_h)  # 2 words in vocab, 7 dimensional embeddings
lookup_tensor = torch.LongTensor([word_to_ix["hello"]])
hello_embed = embeds(autograd.Variable(lookup_tensor))
lookup_tensor = torch.LongTensor([word_to_ix["world"]])
world_embed = embeds(autograd.Variable(lookup_tensor))

print("Hello Emb:", hello_embed)

encoder = ConvLSTM(
    input_size=(feat_dim_h, feat_dim_w),
    input_dim=feat_dim_chan + feat_dim_h,
    hidden_dim=hidden_size,
    kernel_size=(3, 3),
    num_layers=2,
)

encoder.cuda()

crit = nn.MSELoss()  #nn.BCELoss()
crit.cuda()

threshold = nn.Threshold(0., 0.0)

params = list(encoder.parameters())
optimizer = optim.Adam(params, lr=0.001)

s = 1
示例#17
0
tester = test.TesterMnist(out_dir=test_out_dir)

#--------model---------

cnn_encoder = ConvEncoder(hidden_dim)
cnn_decoder = ConvDecoder(b_size=b_size,inp_dim=hidden_dim)

cnn_encoder.cuda()
cnn_decoder.cuda()

lstm_encoder = ConvLSTM(
                   input_size=(hidden_spt,hidden_spt),
                   input_dim=hidden_dim,
                   hidden_dim=lstm_dims,
                   kernel_size=(3,3),
                   num_layers=3,
                   peephole=True,
                   batchnorm=False,
                   batch_first=True,
                   activation=F.tanh
                  )

lstm_decoder = ConvLSTM(
                   input_size=(hidden_spt,hidden_spt),
                   input_dim=hidden_dim,
                   hidden_dim=lstm_dims,
                   kernel_size=(3,3),
                   num_layers=3,
                   peephole=True,
                   batchnorm=False,
                   batch_first=True,