示例#1
0
    def psi(self, s):
        assert not np.isnan(self.params), "Copula must have parameters to calculate psi"

        s = np.asarray(s)
        if self.params <= -36:
            return -log1pexp(-s - self.params) / self.params
        elif self.params < 0:
            return -np.log1p(np.exp(-s) * np.expm1(-self.params)) / self.params
        elif self.params == 0:
            return np.exp(-s)
        else:
            const = log1mexp(self.params)
            m = np.less(s, const, where=~np.isnan(s))

            s[m] = np.nan
            s[~m] = -log1mexp(s[~m] - log1mexp(self.params)) / self.params
            return s.item(0) if s.size == 1 else s
示例#2
0
    def pdf(self, u: Array, log=False):
        assert not np.isnan(self.params), "Copula must have parameters to calculate parameters"

        n, d = u.shape
        theta = self.params

        ok = valid_rows_in_u(u)
        res = np.repeat(np.nan, n)

        u_ = u[ok]
        u_sum = u_.sum(1)
        lp = log1mexp(theta)
        lpu = log1mexp(theta * u_)
        lu = lpu.sum(1)

        li_arg = np.exp(lp + (lpu - lp).sum(1))
        li = poly_log(li_arg, 1 - d, log=True)

        res[ok] = (d - 1) * np.log(theta) + li - theta * u_sum - lu

        return res if log else np.exp(res)
示例#3
0
    def random(self, n: int, seed: int = None):
        u = random_uniform(n, self.dim, seed)
        if abs(self.params) < 1e-7:
            return u

        if self.dim == 2:
            v = u[:, 1]
            a = -abs(self.params)
            v = -1 / a * np.log1p(-v * np.expm1(-a) / (np.exp(-a * u[:, 0]) * (v - 1) - v))
            u[:, 1] = 1 - v if self.params > 0 else v
            return u

        # alpha too large
        if log1mexp(self.params) == 0:
            return np.ones((n, self.dim))

        fr = random_log_series_ln1p(-self.params, n)[:, None]
        return self.psi(-np.log(u) / fr)