def test__extract_constant(self): distribution = UniformUnivariate() distribution._params = {'loc': 1, 'scale': 0} constant = distribution._extract_constant() assert 1 == constant
def test__fit(self): distribution = UniformUnivariate() data = uniform.rvs(size=1000, loc=0, scale=1) distribution._fit(data) expected = { 'loc': 0, 'scale': 1, } for key, value in distribution._params.items(): np.testing.assert_allclose(value, expected[key], atol=0.3)
def test__fit_constant(self): distribution = UniformUnivariate() distribution._fit_constant(np.array([1, 1, 1, 1])) assert distribution._params == {'loc': 1, 'scale': 0}
def test__is_constant_false(self): distribution = UniformUnivariate() distribution.fit(np.array([1, 2, 3, 4])) assert not distribution._is_constant()
def test__is_constant_true(self): distribution = UniformUnivariate() distribution.fit(np.array([1, 1, 1, 1])) assert distribution._is_constant()